

Centre Scientifique et Technique du Bâtiment

84 avenue Jean Jaurès CHAMPS-SUR-MARNE F-77447 Marne-la-Vallée Cedex 2

Tél.: (33) 01 64 68 82 82 Fax: (33) 01 60 05 70 37

Evaluation Technique Européenne

ETE-21/0878 du 28/02/2024

(Version originale en langue française)

Partie Générale

Organisme d'Evaluation Technique (TAB) délivrant l'Evaluation Technique Européenne:

Centre Scientifique et Technique du Bâtiment (CSTB)

Nom commercial: Hilti HST4-R

Famille de produit: Cheville à expansion à couple contrôlé, fabriquée en acier

inoxydable, pour utilisation dans le béton: tailles M8, M10,

M12, M16 et M20.

Fabricant: Hilti Corporation

Feldkircherstrasse 100

FL-9494 Schaan

Principality of Liechtenstein

Usines de fabrication: Usines Hilti

Cette Evaluation Technique

Européenne contient:

28 pages incluant 25 pages d'annexes qui font partie

intégrante de cette évaluation

Cette Evaluation Technique Européenne est délivrée selon la Réglementation (EU) No

305/2011, sur la base de:

EAD 330232-01-0601-v03 "Mechanical fasteners with variable

embedment depth for use in concrete"

Cette Evaluation remplace: ETA-21/0878 du 28/10/2023

Les traductions de cette Evaluation Technique Européenne dans d'autres langues doivent correspondre pleinement au document original et doivent être identifiées comme telles. La communication de cette évaluation technique européenne, y compris la transmission par voie électronique, doit être complète. Cependant, une reproduction partielle peut être faite, avec le consentement écrit de l'organisme d'évaluation technique d'émission. Toute reproduction partielle doit être identifiée comme telle. La présente Evaluation Technique Européenne peut être retirée par l'Organisme d'Evaluation Technique émetteur, notamment sur information de la Commission conformément à l'article 25, paragraphe 3, du règlement (UE) n° 305/2011.

Partie spécifique

1 Description technique du produit

La cheville Hilti HST4-R est une cheville à expansion à couple contrôlé fabriquée en acier inoxydable qui est insérée dans un trou et expanse par une expansion par couple contrôlé.

La description du produit est donnée dans les Annexes A.

2 Définition de l'usage prévu

Les performances données dans la section 3 ne sont valables que si la cheville est utilisée conformément aux spécifications et conditions données dans les annexes B.

Les dispositions prises dans cette Evaluation Technique Européenne sont basées sur une durée de vie supposée de l'ancrage de 50 ans. Les indications données sur la durée de vie ne peuvent être interprétées comme une garantie donnée par le fabricant mais doivent être considérées uniquement comme un moyen de choisir les bons produits par rapport à la durée de vie économiquement raisonnable attendue des ouvrages.

3 Performances du produit

3.1 Resistance mécanique et stabilité (BWR 1)

Caractéristique essentielle	Performance
Résistances caractéristiques sous chargement statique et quasi statique, déplacements	Voir les Annexes C1 à C3
Résistances caractéristiques sous chargement sismique de catégorie C1, déplacements	Voir les Annexes C4 à C5
Résistances caractéristiques sous chargement sismique de catégorie C2, déplacements	Voir les Annexes C6 à C7
Durabilité	Voir l'Annexe B1

3.2 Sécurité en cas d'incendie (BWR 2)

Caractéristique essentielle	Performance
Réaction au feu	Les ancrages satisfont aux exigences de la Classe A1
Résistance au feu	Voir les Annexes C8 à C9

3.3 Hygiène, santé et environnement (BWR 3)

Concernant les substances dangereuses contenues dans cette Evaluation technique Européenne, il peut y avoir des exigences applicables aux produits entrant dans son champ d'application (par exemple la législation européenne transposée et les lois, réglementations et dispositions administratives nationales). Afin de respecter les dispositions de la directive sur les produits de construction, ces exigences doivent également être respectées, quand et où elles s'appliquent.

3.4 Sécurité d'utilisation (BWR 4)

Pour les exigences essentielles de Sécurité d'utilisation les mêmes critères que ceux mentionnés dans les exigences essentielles Resistance mécanique et stabilité sont applicables.

3.5 Protection contre le bruit (BWR 5)

Not relevant.

3.6 Economie d'énergie et isolation thermique (BWR 6)

Non applicable.

3.7 Utilisation durable des ressources naturelles (BWR 7)

Pour l'utilisation durable des ressources naturelles aucune performance a été déterminée pour ce produit.

3.8 Aspects généraux relatifs à l'aptitude à l'emploi

La durabilité et l'aptitude à l'usage ne sont assurées que si les spécifications pour l'usage prévu conformément à l'annexe B1 sont maintenus.

4 Evaluation et vérification de la constance des performances (EVCP)

Conformément à la décision 96/582/EC de la Commission Européenne , tel qu'amendée, le système d'évaluation et de vérification de la constance des performances (Voir Annexe V du règlement n° 305/2011 du parlement Européen) donné dans le tableau suivant s'applique.

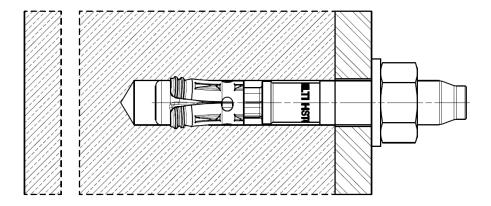
Produit	Usage prévu	Niveau ou classe	Système
Ancrages métalliques pour le béton	Pour fixer et / ou soutenir dans le béton, des éléments structurels (qui contribuent à la stabilité de l'ouvrage) ou des éléments lourds.	_	1

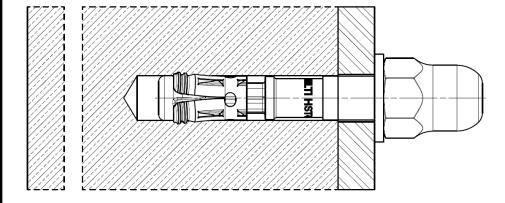
5 Données techniques nécessaires pour la mise en place d'un système Evaluation et de vérification de la constance des performances (EVCP)

Les données techniques nécessaires à la mise en œuvre du système d'évaluation et de vérification de la constance des performances (EVCP) sont fixées dans le plan de contrôle déposé au Centre Scientifique et Technique du Bâtiment.

Le fabricant doit, sur la base d'un contrat, impliquer un organisme notifié pour les tâches visant la délivrance du certificat de conformité CE dans le domaine des fixations, basé sur ce plan de contrôle.

Délivré à Marne La Vallée le 28/02/2024 par :

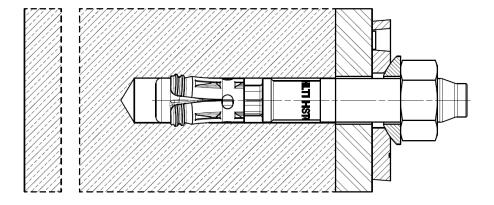

Loic PAYET

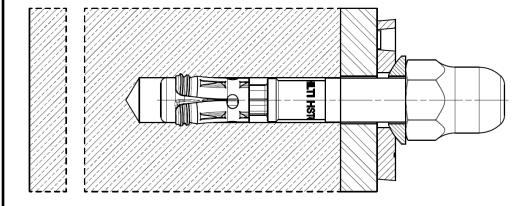

Chef de la division Structure, Maçonnerie et Partition

Produit installé

Figure A1:

Cheville métallique à expansion Hilti HST4-R avec respectivement un écrou hexagonal standard ou avec un écrou optionnel en dôme

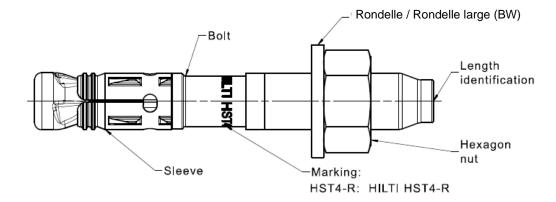

Hi	lti	HS.	T4-R

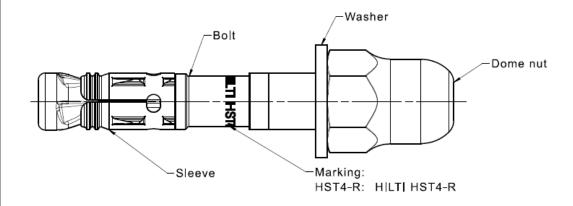

Description du produit

Produit installé

Figure A2:

Cheville métallique à expansion Hilti HST4-R avec le Filling Set Hilti et respectivement un écrou hexagonal standard ou avec un écrou optionnel en dôme




Hi	lti	HS.	T4-R

Description du produit

Produit installé

Description du produit: Cheville métallique à expansion Hilti HST4-R

Hilti HST4

Description du produit

Types de chevilles, marquages et identification

Tableau A1: Identification de la longueur, chevilles HST4-R

Lettre			Α	В	С	D	Е	F	G
Longueur de la	≥	[mm]	38,1	50,8	63,5	76,2	88,9	101,6	114,3
cheville	<	[mm]	50,8	63,5	76,2	88,9	101,6	114,3	127,0

Lettre			Н	I	J	K	L	М	N
Longueur de la	≥	[mm]	127,0	139,7	152,4	165,1	177,8	190,5	203,2
cheville	<	[mm]	139,7	152,4	165,1	177,8	190,5	203,2	215,9

Lettre			0	Р	Q	R	S	Т	U
Longueur de la	≥	[mm]	215,9	228,6	241,3	254,0	279,4	304,8	330,2
cheville	<	[mm]	228,6	241,3	254,0	279,4	304,8	330,2	355,6

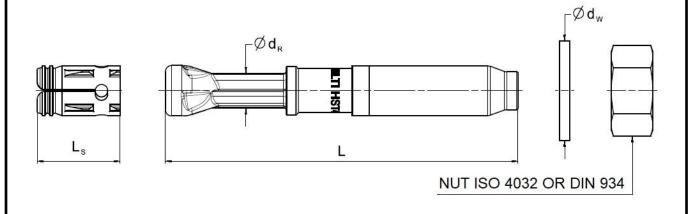
Lettre			V	W	Х	Y	Z	AA	BB
Longueur de la	≥	[mm]	355,6	381,0	406,4	431,8	457,2	482,6	508,0
cheville	<	[mm]	381,0	406,4	431,8	457,2	482,6	508,0	533,4

Lettre		СС	DD	EE	
Longueur de la	≥	[mm]	533,4	558,8	584,2
cheville	<	[mm]	558,8	584,2	609,6

Hilti HST4-R

Description du produit Identification de la longueur

Tableau A2: Matériaux, Hilti HST4-R


Elément	Matériaux	
HST4-R		
Classe de resistance a la	corrosion III selon l'EN 1993-1-4:2006+A1:2015	
Douille d'expansion	Acier inoxydable A4 selon l'EN 10088-1:2014	
Elément fileté	Acier inoxydable A4 selon l'EN 10088-1:2014	
	Allongement à la rupture ($I_0 = 5d$) > 8 %	
Rondelle	Acier inoxydable A4 selon l'EN 10088-1:2014	
Ecrou hexagonal	Acier inoxydable A4 selon l'EN 10088-1:2014	
Ecrou dôme		
Filling set		
Classe de résistance à la	corrosion III selon I' EN 1993-1-4:2006+A1:2015	
Rondelle de scellement	Acier inoxydable A4 selon l'EN 10088-1:2014	
Rondelle sphérique	Acier inoxydable A4 selon l'EN 10088-1:2014	
Mortier		
Mortier d'injection	Mortier d'injection Hilti HIT-HY	

Hilti HST4-R	
Description du produit Matériaux	Annexe A5

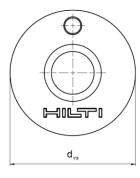
Tableau A3: Dimensions de la cheville HST4-R

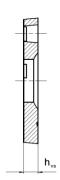
HST4-R			M8	M10	M12	M16	M20
Longueur de la douille d'expansion	ℓs	[mm]	15,0	18,0	20,0	26,0	28,3
Diamètre ext. de la rondelle		[mm]	16	20	24	30	37
Diamètre ext. de la rondelle large (BW)	$d_{W} \geqslant$	[mm]	24	30	37	50	-

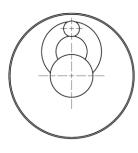
HST4-R

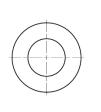
Hilti HST4	
Description du produit Dimensions	Annexe A6

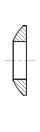
Filling Set permettant de combler l'espace annulaire entre la cheville et la pièce à fixer


Tableau A4: Dimensions du Filling Set utilisé avec la cheville HST4-R


Filling Set utilisé avec la cheville HST4-R			M8	M10	M12	M16	M20
Diamètre de la rondelle de scellement	d_{vs}	[mm]	38	42	44	52	60
Epaisseur de la rondelle de scellement	h _{vs}	[mm]	5			(õ
Epaisseur du Filling Set Hilti	h _{fs}	[mm]	8	9	10	11	13


Rondelle de scellement


Rondelle sphérique


Filling Set

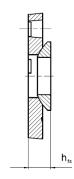
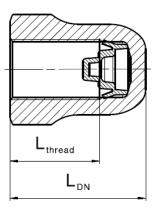



Tableau A5: Dimensions de l'écrou dôme

Ecrou dôme utilisé avec la cheville HST4-R			M8	M10	M12	M16
Longueur filetée	$L_{thread} \ge$	[mm]	13,3	16,8	17,8	22,3
Longueur de l'écrou	L _{DN} ≥	[mm]	18,1	21,9	24,0	29,5

Ecrou dôme

Hilti HST4	
Description du produit Dimensions	Annexe A7

Précisions sur l'emploi prévu

Ancrages soumis à:

- Chargement statique et quasi statique: toutes tailles.
- Performance sismique de catégorie C1 et C2: toutes tailles.
- Exposition au feu: toutes tailles.

Matériau support:

- Béton renforcé ou non renforcé de masse volumique courante selon l'EN 206:2013+ A1:2016.
- Classes de résistance C20/25 à C50/60 selon l'EN 206:2013+A1:2016.
- · Béton fissuré et non fissuré.

Conditions d'utilisation (Conditions environnementales):

Chevilles HST4-R fabriquées en acier inoxydable:
 Structures soumises à des conditions externes / internes, voir EAD.

Dimensionnement:

- Les ancrages sont dimensionnés sous la responsabilité d'un ingénieur expérimenté en ancrages et travaux de bétonnage.
- Des notes de calcul et des dessins vérifiables sont établis en tenant compte des charges à ancrer.
 La position de la cheville est indiquée sur les dessins de conception (par exemple position de la cheville par rapport aux armatures ou aux supports, etc.).
- Les ancrages sous charge statique ou quasi-statique sont dimensionnés conformément à l'EN 1992-4:2018
- Les ancrages sous actions sismiques (béton fissuré) sont dimensionnés conformément à l'EN 1992-4:2018
- Les ancrages doivent être positionnés à l'extérieur des zones critiques (par exemple les rotules plastiques) de la structure en béton. Les fixations avec déport ou avec une couche de mortier sous action sismique ne sont pas couvertes par cette Evaluation Technique Européenne (ETA)
- · En cas d'exigences de résistance au feu, un éclatement local de l'enrobage en béton doit être évité.
- Pour une profondeur d'ancrage efficace hef < 40 mm, seuls les fixations statiquement indéterminées (par exemple, les plafonds suspendus légers) sont couvertes par l'ETA. Ces fixations sont conçues conformément à la norme EN 1992-4:2018, Clause 7 et Annexe G.

Installation:

- Installation des ancrages effectuée par du personnel dûment qualifié et sous la supervision de la personne responsable des questions techniques du chantier
- · La cheville doit être posée une fois.
- · Technique de perçage: voir le Tableau B1 et le Tableau B2.
- Nettoyer le trou des poussières de perçage.
- En cas de trou abandonné, percer le nouveau trou à une distance minimale de deux fois la profondeur du trou abandonné, ou à une distance plus petite à condition que le trou de forage abandonné soit rempli de mortier à haute résistance et qu'il n'y ait pas de charges de cisaillement ou de tension oblique dans la direction du trou abandonné.

Hilti HST4	
Emploi prévu Spécifications	Annexe B1

Tableau B1: Précisions sur l'emploi prévu

Ancrages soumis à:	M8	M10	M12	M16	M20
Chargement statique et quasi statique dans le béton fissuré et non fissuré - perçage par percussion ¹⁾ et carottage diamant	√ 1)	>	✓	>	√
Performance sismique de catégorie C1 - perçage par percussion ¹⁾ et carottage diamant	√ 1)	✓	✓	√	✓
Performance sismique de catégorie C2 - perçage par percussion ¹⁾ et carottage diamant	√ 1)	√	✓	√	√
Exposition au feu - perçage par percussion ¹⁾ et perçage par carottage diamant	√ 1)	✓	✓	✓	√

¹⁾ perçage par percussion avec le foret creux Hilti (HDB) n'est pas autorisé pour la taille M8.

Tableau B2: Technique de perçage

Ancrages soumis à:	M8	M10	M12	M16	M20
Perçage par percussion (HD)	✓	✓	✓	✓	✓
Perçage par percussion avec le foret creux Hilti (HDB)	1	✓	√	√	√
Carottage diamant (DD) avec:					
Carotteuse DD EC-1 et couronne diamant TS ou TL					
Carotteuse DD 30-W et couronne diamant SPX-T ou SPX-T	✓	✓	✓	√	✓
Carotteuse DD 150-U et couronne diamant SPX-L, SPX-L ou SPX-L					

Tableau B3: Nettoyage du trou

Nettoyage manuel (MC): Pompe à main Hilti pour souffler les poussières du trou	
Nettoyage à l'air comprimé (CAC): La buse doit avoir un diamètre de 3,5 mm	
Nettoyage automatique (AC): Le nettoyage est effectué pendant le perçage avec le système de perçage Hilti TE-CD et TE-YD comprenant un aspirateur	
Absence de nettoyage par 3 aller-retours	-

Hilti HST4-R	
Emploi prévu Spécifications	Annexe B2

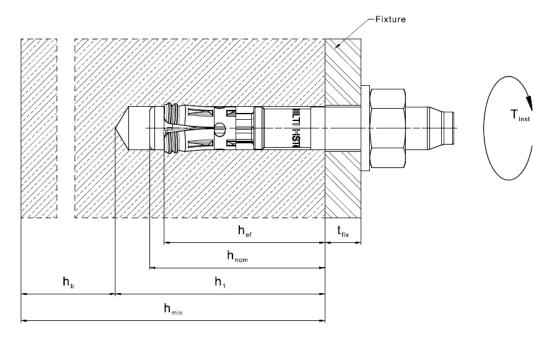
Tableau B4: Méthodes pour l'application du couple

	HST4-R
Clef dynamométrique	M8 à M20
Serrage avec la clé à chocs Hilti SIW et le module de couple adaptatif SI-AT.1)	M8 à M20

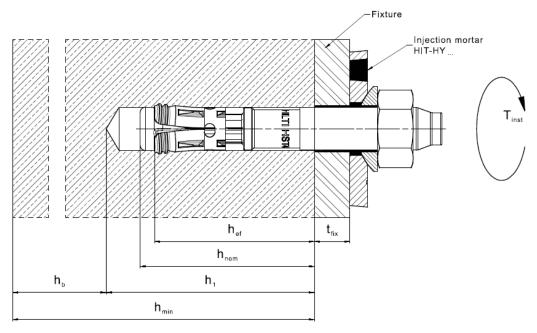
¹⁾ La combinaison de l'outil Hilti SIW + SI-AT, compatible avec ce type d'ancrage, peut être utilisée.

Tableau B5: Paramètres d'installation HST4-R

HST4-R			М8	M10	M12	M16	M20
Diamètre nominal du foret	d ₀	[mm]	8	10	12	16	20
Diamètre de coupe max. du foret	d_{cut}	[mm]	8,45	10,45	12,50	16,50	20,55
Diamètre max du trou de passage dans la pièce fixée	d _f	[mm]	9	12	14	18	22
Profondeur d'ancrage effective	h _{ef}	[mm]	30 - 90	30 - 100	40 - 125	65 - 160	101 - 180
Profondeur nominale d'ancrage	h_{nom}	[mm]	h _{ef} + 6	h _{ef} + 8	h _{ef} + 9	h _{ef} + 12	h _{ef} +15
Profondeur min. du trou (perçage par percussion, sans nettoyage)	h₁≥	[mm]	h _{ef} + 26	h _{ef} + 28	h _{ef} + 29	h _{ef} + 32	h _{ef} +35
Profondeur min. du trou (perçage par percussion, avec nettoyage)	h₁≥	[mm]	h _{ef} + 9	h _{ef} + 12	h _{ef} + 13	h _{ef} + 18	h _{ef} +23
Profondeur min. du trou (trous percés avec foret aspirant)	h₁≥	[mm]	ı	h _{ef} + 12	h _{ef} + 13	h _{ef} + 18	h _{ef} +23
Profondeur min. du trou (trous percés par carottage diamant)	h₁≥	[mm]	h _{ef} + 16	h _{ef} + 18	h _{ef} + 19	h _{ef} + 22	h _{ef} +25
Epaisseur min. de l'élément en béton ²⁾	h _{min} ≥	[mm]	max (80; 1,5 · h _{ef})	max (80; 1,5 ⋅ h _{ef})	max (100; 1,5 · h _{ef})	max (120; 1,5 · h _{ef})	max (160; 1,5 · h _{ef})
Epaisseur min. de béton sous le trou ²⁾	h _b ≥	[mm]	21	27	32	34	36
Largeur de l'écrou	SW	[mm]	13	17	19	24	30
Couple d'installation	T _{inst}	[Nm]	20	40	60	120	180


¹⁾ Pour le dimensionnement de trous de passage plus grands dans la pièce à fixer voir l'EN 1992-4:2018.

Hilti HST4-R	
Emploi prévu Paramètres d'installation	Annexe B3


 $^{^{2)}}$ Sous condition d'une épaisseur min. de béton sous le fond du trou : $h_{\text{min}} \geq h_1 + h_b$

Positions d'installation de la cheville HST4-R

Cheville HST4-R sans le Filling Set Hilti pour remplir l'espace annulaire entre la cheville et la pièce à fixer

Cheville HST4-R avec le Filling Set Hilti pour remplir l'espace annulaire entre la cheville et la pièce à fixer

Hilti HST4-R	
Description du produit Paramètres d'installation	Annexe B4

Tableau B6: Distance minimum au bord et d'espacement for HST4-R

			М8	M10	M12	M16	M20
Épaisseur minimale de l'élément en béton 1)	h _{min} ≥	[mm]	max (80; 1,5 h _{ef})	max (80; 1,5 h _{ef})	max (100; 1,5 h _{ef})	max (120; 1,5 h _{ef})	160+ h _{ef} - h _{ef.min}
Espacement minimal	Smin	[mm]	35	40	40 50		90
Distance minimale au bord	Cmin	[mm]	40	45	45 55		80
Béton non-fissuré							
Profondeur d'ancrage effective	h _{ef}	[mm]	30 - 90	30 - 100	40 - 125	65 - 160	101 - 180
Surface de fendage requise	A _{sp,req}	[mm ²]	18910	27082	41557	48281	79800
Béton fissuré							
Profondeur d'ancrage effective	h _{ef}	[mm]	30 - 90	30 - 100	40 - 125	65 - 160	101 - 180
Surface de fendage requise	$A_{\text{sp,req}}$	[mm ²]	13667	22279	32228	42474	61000

 $^{^{1)}}$ Sous condition d'une épaisseur min. de béton sous le fond du trou: $h_{min} \ge h_1 + h_b$ telle que donnée dans le Tableau B5

Pour le calcul de la distance minimale au bord et de l'espacement en combinaison avec des profondeurs d'encastrement et des épaisseurs de dalle variables, l'équation suivante doit être remplie :

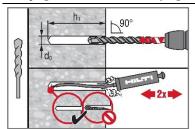
 $A_{sp,ef} \ge A_{sp,req.}$

Avec:

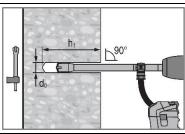
A_{sp,ef}: Surface de fendage effective selon le Tableau B7
A_{sp,req}: Surface min. de fendage requise selon le Tableau B6

Hilti HST4-R	
Emploi prévu Espacement minimum et distance minimale au bord	Annexe B5

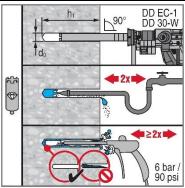
Tableau B7: Surface de fendage effective, cheville HST4-R


Surface de fendage effective A _{sp,ef} pour une épaisseur de béton h > h _{ef} + 1,5 ⋅ c et h ≥ h _{min}										
Chevilles et groupes de chevilles avec 1)	$s > 3 \cdot c$ $h_{ef} < 1, 5 \cdot c$	$A_{sp,ef} = (6 \cdot c) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	Pour c ≥ c _{min}						
Groupes de chevilles avec 1)	s ≤ 3 · c h _{ef} < 1,5 · c	$A_{sp,ef} = (3 \cdot c + s) \cdot (h_{ef} + 1, 5 \cdot c)$	[mm²]	$\begin{array}{c} Pour \\ c \geq c_{min} \\ s \geq s_{min} \end{array}$						
Chevilles et groupes de chevilles avec 1)	$s > 3 \cdot c$ $h_{ef} \ge 1,5 \cdot c$	$A_{\text{sp,ef}} = (6 \cdot c) \cdot (3 \cdot c)$	[mm²]	Pour c ≥ c _{min}						
Groupes de chevilles avec 1)	s ≤ 3 · c h _{ef} ≥ 1,5 · c	$A_{sp,ef} = (3 \cdot c + s) \cdot (3 \cdot c)$	[mm²]	$\begin{array}{c} Pour \\ c \geq c_{min} \\ s \geq s_{min} \end{array}$						
Surface de fendage effective A _{sp,6}	_{ef} pour une é _l	paisseur de béton h ≤ h _{ef} + 1,5 · c and	h ≥ h _{mir}	1						
Chevilles et groupes de chevilles avec 1)	$s > 3 \cdot c$ $h_{ef} < 1,5 \cdot c$	$A_{\text{sp,ef}} = (6 \cdot c) \cdot h$	[mm²]	Pour c ≥ c _{min}						
Groupes de chevilles avec 1)	s ≤ 3 · c h _{ef} < 1,5 · c	$A_{sp,ef} = (3 \cdot c + s) \cdot h$	[mm²]	$\begin{array}{c} Pour \\ c \geq c_{min} \\ s \geq s_{min} \end{array}$						
Chevilles et groupes de chevilles avec 1)	$s > 3 \cdot c$ $h_{ef} \ge 1,5 \cdot c$	$A_{sp,ef} = (6 \cdot c) \cdot (h - h_{ef} + 1.5 \cdot c)$	[mm²]	Pour c ≥ c _{min}						
Groupes de chevilles avec 1)	s ≤ 3 · c h _{ef} ≥ 1,5 · c	$A_{sp,ef} = (3 \cdot c + s) \cdot (h - h_{ef} + 1, 5 \cdot c)$	[mm²]	$\begin{array}{c} Pour \\ c \geq c_{min} \\ s \geq s_{min} \end{array}$						

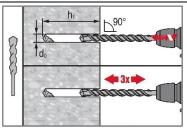
¹⁾ La distance au bord et l'espacement doivent être arrondis par incréments de 5mm.


Hilti HST4-R	
Emploi prévu Espacement minimum et distance minimale au bord	Annexe B6

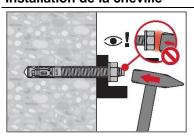
Instructions d'installation


Perçage du trou et nettoyage

a) Perçage par percussion (HD):M8 à M20



Perçage par percussion avec le foret creux Hilti (HDB): M10 à M20

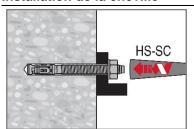

c) Carottage diamant (DD): M8 à M20

Perçage du trou sans nettoyage

Perçage par percussion Absence de nettoyage (HD NC): M8 à M20

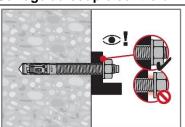
Installation de la cheville

a) Installation au marteau

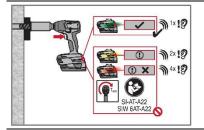

Hilti HST4-R

Emploi prévu

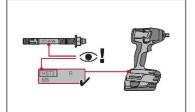
Instructions d'installation

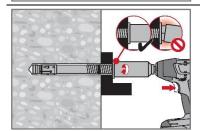

Annexe B7

Installation de la cheville



b) Vissage à la machine (outil de pré-installation):

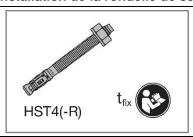

Serrage au couple contrôlé



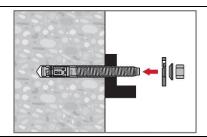
a) Clef dynamométrique: M8 à M20

b) Serrage à la clef à chocs: M8 à M20

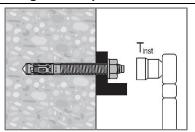
Hilti HST4-R

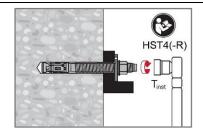

Emploi prévu

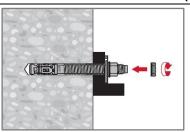
Instructions d'installation

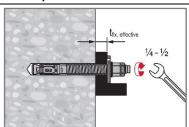

Annexe B8

Installation avec le Filling Set

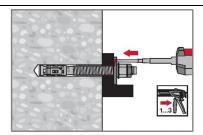

Installation de la rondelle de scellement

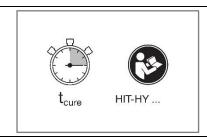



Serrage au couple contrôlé



Clef dynamométrique: M8 à M20


Installation d'un contre-écrou (optionnel)



Injection du mortier

Hilti HST4-R

Emploi prévu

Instructions d'installation

Annexe B9

Tableau C1: Valeurs caractéristiques de résistance sous charges de traction en cas de chargement statique ou quasi-statique dans le béton fissuré

Taille			M8	M10	M12	M16	M20	
Profondeur d'ancrage effective	h _{ef}	[mm]	30-90	30-100	40-125	65-160	101-180	
Rupture de l'acier								
Coefficient de sécurité partiel	$\gamma_{Ms,N}^{1)}$	[-]			1,40			
Résistance caractéristique	$N_{Rk,s}$	[kN]	22,0	32,5	48,0	75,0	115,8	
Rupture par extraction								
Résistance caractéristique dan	s le bétor	n C20/2	5					
Coefficient de sécurité d'installation	γinst	[-]			1,00			
Béton non-fissuré	N _{Rk,p,uncr}	[kN]	19,0	32,0	46,0	60,0	49,9	
Béton fissuré	N _{Rk,p,cr}	[kN]	10,0	20,0	28,0	38,0	35,0	
Facteur d'amplification de	C30/37	[-]	1,22					
N _{Rk,p} pour le béton fissuré et non fissuré	C40/50	[-]			1,41			
$\psi_{c} = (f_{ck}/20)^{0.5}$	C50/60	[-]			1,58			
Rupture par cône béton et pa	ar fendag	e						
Coefficient de sécurité d'installation	γinst	[-]			1,0			
Footour	k ₁ =k _{ucr,N}	[-]	11,0	12,7	12,7	12,7	11,0	
Facteur	k ₁ =k _{cr,N}	[-]	7,7	8,9	8,9	8,9	7,7	
Espacement	S _{cr,N}	[mm]			3·h _{ef}			
Distance au bord	Ccr,N	[mm]			1,5·h _{ef}			
Résistance caractéristique au fendage 3)	$N^0_{Rk,sp}$	[kN]		Min	(N _{Rk,p} ; N ⁰ _{Rk}	,c) ³⁾		
Surface de fendage requise pour déterminer c _{cr,sp} ⁴⁾	Arqd	[mm²]	(N ⁰ _{Rk,sp,C20} - b) / a ⁴⁾					
Facteur pour le calcul de A _{rqd}	b	[-]	-4,7072	-8,7141	-11,678	3,7791	2)	
Facteur pour le calcul de Arqd	а	[-]	0,00099	2)				
Espacement (fendage)	Scr,sp	[mm]	2 · C _{cr,sp}					
Distance au bord (fendage) 5)	C _{cr,sp}	[mm]		+ 0,8 · (h _{min} – h A _{rqd} /(h _{min} · 8 ^{0,5})	$(1.5 \cdot h_{ef})^2)/(3.41 \cdot h_{mir})^2 \ge (1.5 \cdot h_{ef})^{-6}$	n – 0,59 · h _{ef});	1,9 ⋅ h _{ef}	

¹⁾ En l'absence d'autres réglementations nationales

Hilti HST4-R	
Performances Résistance caractéristique sous charge de traction	Annexe C1

²⁾ Aucune performance évaluée

 $^{^{3)}}$ N^{0} _{Rk,c} selon l'EN 1992-4:2018

⁴⁾ N⁰_{Rk,sp,C20} en kN et calculé pour du béton C20/25 non-fissuré

 $^{^{5)}}$ h_{min} = épaisseur minimale de l'élément associée à la profondeur d'ancrage h_{ef} sous la condition $h_{min} \le 4 \cdot h_{ef}$

⁶⁾ c_{cr,sp} ≥ (1,5·h_{ef}) si la rupture du cône de béton est déterminante pour l'évaluation de N⁰_{Rk,sp}

Tableau C2: Valeurs caractéristiques de la résistance sous charges de cisaillement en cas de chargement statique ou quasi-statique

Taille			M	18	M	10	M	12	M16	M20
Rupture de l'acier sans lev	er arm									
Profondeur d'ancrage effective	h _{ef}	[mm]	30-90		30-	100	100 40-12		65-160	101-180
Coefficient de sécurité partiel	γ _{Ms,V} 1)	[-]					1,:	25		
Facteur de ductilité	k ₇	[-]					1,	00		
Résistance caractéristique	$V^0_{Rk,s}$	[kN]	17	' ,4	27	' ,5	Min (0 + 20 41	,76;	72,4	97,2
Résistance caractéristique avec le Filling Set Hilti	$V^0_{Rk,s}$	[kN]	17	' ,4	27	' ,5		,34·h _{ef}),76; ,3)	72,4	102,7
Rupture de l'acier avec lev	er arm						•			•
Profondeur d'ancrage effective	h _{ef}	[mm]	30-	-90	30-	100	00 40-125		65-160	101-180
Coefficient de sécurité partiel	γ _{Ms,V} 1)	[-]		1,25						
Facteur de ductilité	k ₇	[-]					1,	00		
Résistance caractéristique	$M^0_{Rk,s}$	[Nm]	3	0	5	8	10	00	243	425
Rupture du béton par effet	levier									
Profondeur d'ancrage effective	h _{ef}	[mm]	30- 39	40- 90	30- 39	40- 100	40- 49	50- 125	65-160	101-180
Facteur d'effet levier	k ₈	[-]	2,05	2,76	1,86	2,00	2,5	2,74	3,0	3,2
Coefficient de sécurité d'installation	γinst	[-]	1,00							
Rupture du bord de l'élém	ent en bé	éton								
Longueur effective de la cheville	$I_f = h_{ef}$	[mm]	30-90		30-100		40-125		65-160	101-180
Diamètre de la cheville	d _{nom}	[mm]	8	3	1	0	12		16	20
Coefficient de sécurité d'installation	γinst	[-]					1,	00		

¹⁾ En l'absence d'autres réglementations nationales

Hilti HST4-R	
Performances Résistance caractéristique sous charge de cisaillement	Annexe C2

Tableau C3: Déplacements sous charge de traction en cas de chargement statique ou quasi-statique

Taille			M8	M10	M12	M16	M20
Profondeur d'ancrage effective	h _{ef}	[mm]	30-90	30-100	40-125	65-160	101-180
Charge de traction dans le béton non-fissuré	N	[kN]	10,5	15,5	22,9	35,7	24,4
Déplacement correspondant	δνο	[mm]	0,92	0,79	1,53	2,04	0,5
	$\delta_{N\infty}$	[mm]	0,92	0,79	1,53	2,04	0,9
Charge de traction dans le béton fissuré	N	[kN]	4,8	9,5	13,3	17,1	17,4
Déplacement correspondant	δνο	[mm]	0,70	0,86	0,87	1,12	1,3
	δn∞	[mm]	1,78	1,54	1,62	1,29	1,8

Tableau C4: Déplacements sous charge de cisaillement en cas de chargement statique ou quasi-statique

Taille			М8	M10	M12	M16	M20
Profondeur d'ancrage effective	hef	[mm]	30-90	30-100	40-125	65-160	101-180
Charge de cisaillement dans le béton non-fissuré	V	[kN]	8,9	14,1	21,1	36,9	55,6
Déplacement correspondant	δ_{v0}	[mm]	6,7	4,0	4,5	3,2	3,2
	δ_{v^∞}	[mm]	10,0	5,9	6,8	4,7	4,8
Charge de cisaillement dans le béton non-fissuré avec le Filling Set	V	[kN]	8,9	14,1	21,1	36,9	58,7
Déplessement serves per deut	δ_{v0}	[mm]	6,7	4,0	4,5	3,2	4,9
Déplacement correspondant	$\delta_{\text{v}\infty}$	[mm]	10,0	5,9	6,8	4,7	7,3

Hilti HST4-R	
Performances Déplacements	Annexe C3

Tableau C5: Valeurs caractéristiques de résistance sous charges de traction, catégorie sismique C1

Taille			M8	M10	M12	M16	M20		
Profondeur d'ancrage effective	h _{ef}	[mm]	30-90	30-100	40-125	65-160	101-180		
Rupture de l'acier									
Coefficient de sécurité partiel	γMs,C1 ¹⁾	[-]			1,4				
Résistance caractéristique	$N_{\text{Rk,s,C1}}$	[kN]	22,0	32,5	48,0	75,0	115,8		
Rupture par extraction									
Coefficient de sécurité d'installation	γinst	[-]			1,0				
Résistance caractéristique	NRk,p,C1	[kN]	Min (0,0321·h _{ef} ^{1,5} ; 9,3)	Min (0,0378·h _{ef} ^{1,5} ; 19,1)	Min (0,0374h _{ef} ^{1,5} ; 24,4)	Min (0,0390·h _{ef} ^{1,5} ; 37,1)	35,0		
Rupture par cône bétor	2)								
Coefficient de sécurité d'installation	γinst	[-]			1,0				
Facteur	k ₁ =k _{cr,N}	[-]	7,7 8,9 8,9 8,9 7,7						
Rupture par fendage 2)				·			·		
Coefficient de sécurité d'installation	γinst	[-]	1,0						

¹⁾ En l'absence d'autres réglementations nationales

Hilti HST4-R	
Performances Resistance caractéristique sous actions sismiques, catégorie sismique C1	Annex C4

²⁾ Pour une rupture par cône béton et une rupture par fendage voir l'EN 1992-4:2018

Tableau C6: Valeurs caractéristiques de la résistance sous charges de cisaillement, catégorie sismique C1

Taille			M8 M10 M12 M16							
Rupture de l'acier										
Facteur de réduction selon l'EN 1992-4:2018 sans Filling Set	$lpha_{\sf gap}$	[-]	0,5							
Facteur de réduction selon l' EN 1992-4:2018 avec Filling Set	lphagap	[-]			1,0					
Profondeur d'ancrage effective	h _{ef}	[mm]	30-90	30-100	40-125	65-160	101-180			
Résistance caractéristique	$V_{\text{Rk,s,C1}}$	[kN]	Min (0,165·h _{ef} +8,26; 15,7)	Min (0,166⋅h _{ef} +13,3; 23,3)	Min (0,00063⋅h _{ef} ² +0,3283⋅h _{ef} +17,72; 39,9)	Min (0,268·h _{ef} +38,0; 60,8)	56,7			
Résistance caractéristique avec le Filling Set	V _{Rk,s,C1}	[kN]	Min (0,165⋅h _{ef} +8,26; 15,7)	Min (0,166·h _{ef} +13,3; 23,3)	Min (0,00063·h _{ef} ² +0,3283·h _{ef} +17,72; 39,9)	Min (0,268·h _{ef} +38,0; 60,8)	102,7			
Coefficient de sécurité partiel	γMs,C1 ¹⁾	[-]			1,25					
Rupture du béton par effet le	evier ²⁾									
Profondeur d'ancrage effective	h _{ef}	[mm]	30-90	30-100	40-125	65-160	101-180			
Coefficient de sécurité d'installation	γinst	[-]	1,00							
Rupture du bord de l'élément en béton 2)										
Profondeur d'ancrage effective	h _{ef}	[mm]	30-90	30-100	40-125	65-160	101-180			
Coefficient de sécurité d'installation	γinst	[-]			1,00					

¹⁾ En l'absence d'autres réglementations nationales

Hilti HST4-R	
Performances Resistance caractéristique sous actions sismiques, catégorie sismique C1, déplacements	Annexe C5

 $^{^{2)}}$ Pour une rupture par cône béton et une rupture par fendage voir l'EN 1992-4:2018

Tableau C7: Valeurs caractéristiques de résistance sous charges de traction, catégorie sismique C2

Taille	М8	M10	M12	M16	M20			
Rupture de l'acier								
Profondeur d'ancrage effective	h _{ef}	[mm]	30-90	30-100	40-125	65-160	101-180	
Résistance caractéristique	N _{Rk,s,C2}	[kN]	22,0	32,5	40,0	75,0	115,8	
Coefficient de sécurité partiel	γMs,C2 ¹⁾	[-]			1,4			
Rupture par extraction								
Profondeur d'ancrage effective	h _{ef}	[mm]	30 - 90	30 - 100	40 – 125	65 - 160	101-180	
Résistance caractéristique	$N_{Rk,p,C2}$	[kN]	Min (0,09·h _{ef} + 0,33; 5,0)	Min (0,25·h _{ef} – 2,44; 12,7)	Min (0,33·h _{ef} – 2,68; 22,0)	Min (0,69·h _{ef} – 25,25; 36,8)	35,0	
Coefficient de sécurité d'installation	γinst	[-]			1,0			
Rupture par cône béton 2)								
Profondeur d'ancrage effective	h _{ef}	[mm]	30-90	30-100	40-125	65-160	101-180	
Coefficient de sécurité d'installation	γinst	[-]	1,0					
Facteur	k ₁ =k _{cr,N}	[-]	7,7	8,9	8,9	8,9	7,7	
Rupture par fendage 2)								
Profondeur d'ancrage effective	h _{ef}	[mm]	30-90	30-100	40-125	65-160	101-180	
Coefficient de sécurité d'installation	γinst	[-]						

¹⁾ En l'absence d'autres réglementations nationales

Tableau C8: Déplacements sous charges de traction, catégorie sismique C2

Taille			M8	M10	M12	M16	M20
Profondeur d'ancrage effective	h _{ef}	[mm]	30-90	30-100	40-125	65-160	101-180
Déplacements DLS	δN,C2(DLS)	[mm]	3,4	3,4	3,5	4,6	6,9
Déplacements ULS	$\delta_{\text{N,C2(ULS)}}$	[mm]	10,1	22,9	17,3	13,9	18,4

Hilti HST4-R Performances Resistance caractéristique et déplacements sous actions sismiques, catégorie sismique C2 Annex C6

²⁾ Pour une rupture par cône béton et une rupture par fendage voir l'EN 1992-4:2018

Tableau C9: Valeurs caractéristiques de la résistance sous charges de cisaillement, catégorie sismique C2

Taille	М8	M10	M12	M16	M20		
Rupture de l'acier							
Facteur de réduction selon l' EN 1992-4:2018 sans Filling Set	αgap	[-]			0,5		
Facteur de réduction selon l' EN 1992-4:2018 avec Filling Set	αgap	[-]			1,0		
Profondeur d'ancrage effective	h _{ef}	[mm]	30 - 90	30 - 100	40 - 125	65 - 160	101-180
Résistance caractéristique	$V_{Rk,s,C2}$	[kN]	Min (0,11·h _{ef} +5,06; 10,2)	Min (0,14·h _{ef} +10,24; 18,8)	Min (0,20·h _{ef} +12,05; 24,0)	51,3	49,5
Résistance caractéristique avec Filling Set	V _{Rk,s,C2}	[kN]	Min (0,11·h _{ef} +5,06; 10,2)	Min (0,14·h _{ef} +10,24; 18,8)	Min (0,20·h _{ef} +12,05; 24,0)	51,3	67,4
Coefficient de sécurité partiel	γMs,C2 ¹⁾	[-]			1,25		
Rupture du béton par effet levier 2)						
Profondeur d'ancrage effective	h _{ef}	[mm]	30-90	30-100	40-125	65-160	101-180
Coefficient de sécurité d'installation	γinst	[-]	1,00				
Rupture du bord de l'élément en b	éton ²⁾						
Profondeur d'ancrage effective	h _{ef}	[mm]	30-90 30-100 40-125 65-160 101-1				
Coefficient de sécurité d'installation	γinst	[-]			1,00		

¹⁾ En l'absence d'autres réglementations nationales

Tableau C10: Déplacements sous charges de cisaillement, catégorie sismique C2

Taille			M8	M10	M12	M16	M20
Profondeur d'ancrage effective	h _{ef,1}	[mm]	30-90	30-100	40-125	65-160	101-180
Déplacements							
Déplacement DLS	δ V,C2 (DLS)	[mm]	3,8	4,1	5,1	4,5	3,9
Déplacement DLS avec le Filling set	δv,C2 (DLS)	[mm]	1)	1)	1)	1)	2,2
Déplacement ULS	δ V,C2 (ULS)	[mm]	6,2	8,2	9,9	7,5	7,0
Déplacement ULS avec le Filling set	δv,c2 (uls)	[mm]	1)	1)	1)	1)	7,0

¹⁾ Aucune performance évaluée

Hilti HST4-R	
Performances Resistance caractéristique et déplacements sous actions sismiques, catégorie sismique C2	Annexe C7

²⁾ Pour une rupture par cône béton et une rupture par fendage voir l'EN 1992-4:2018

Tableau C11: Résistance caractéristique en traction sous exposition au feu dans le béton fissuré

Taille			M8 M10				M12		М	16	M20			
Profondeur d'an effective	crage	h _{ef}	[mm]	30 - 46	47 - 90	30 - 39	40 - 59	60 - 100	40 - 49	50 - 69	70 - 125	65 - 84	85 - 160	101- 180
Rupture de l'aci	er													
	R30	N _{Rk,s,fi}	[kN]	2,2	4,9	3,5	5,2	11,8	5,2	9,1	17,1	16,9	31,9	49,8
Résistance	R60	$N_{\text{Rk,s,fi}}$	[kN]	1,8	3,6	2,9	3,7	8,4	4,4	6,8	12,2	12,6	22,8	35,5
caractéristique	R90	$N_{Rk,s,fi}$	[kN]	1,4	2,4	2,3	2,5	5,0	3,6	4,5	7,3	8,4	13,6	21,2
	R120	$N_{Rk,s,fi}$	[kN]	1,2	1,7	2,0	2,0	3,3	3,2	3,3	4,8	6,2	9,0	14,1
Rupture par ext	raction	1												
	R30	$N_{Rk,p,fi}$	[kN]											
Résistance R	R60	$N_{Rk,p,fi}$	[kN]	2,5		5,0		7,0			9,5		9,1	
caractéristique ≥C20/25	R90	$N_{Rk,p,fi}$	[kN]											
	R120	$N_{Rk,p,fi}$	[kN]	2	2,0 4,0 5,6 7,6		4,0 5,6		,6	7,3				
Rupture par côr	ne béto	n												
	R30	N _{Rk,c,fi}	[kN]											
Résistance	R60	N _{Rk,c,fi}	[kN]				h	nef / 200	0- N 0 _{Rk}	_{c,c} ≤ N ⁰	Rk,c			
caractéristique ≥C20/25	R90	$N_{Rk,c,fi}$	[kN]											
	R120	N _{Rk,c,fi}	[kN]				0,8	h _{ef} / 2	00·Nº	_{Rk,c} ≤ I	N ⁰ Rk,c			
Facteur		k ₁ =k _{cr,N}	[-]	7	,7		8,9			8,9		8	,9	7,7
Scr,N,fi [mm]			[mm]						4 h _{ef}	:				
Espacement		Smin	[mm]	3	5		40			50		6	5	90
		Ccr,N,fi	[mm]						2 h _{ef}	:				
Distance au bord			[mm]	Si le feu attaque d'un coté: 2 h _{ef} Si le feu attaque de plus d'un coté : ≥ 300 mm										

En l'absence d'autres réglementations nationales, le coefficient partiel de sécurité pour la résistance à l'exposition au feu $\gamma_{M,fi} = 1,0$ est recommandé

Hilti HST4-R	
Performances Résistance caractéristique en traction sous exposition au feu	Annexe C8

Tableau C12: Résistance caractéristique en cisaillement sous exposition au feu dans le béton fissuré

Taille			М8		M10			M12			M16		M20	
Profondeur d'ancrage effective		h _{ef}	[mm]	30 - 46	47 - 90	30 - 39	40 - 59	60 - 100	40 - 49	50 - 69	70 - 125	65 - 84	85 - 160	101- 180
Rupture de l'acier														
Résistance caractéristique	R30	$V_{Rk,s,fi}$	[kN]	2,2	4,9	3,5	5,2	11,8	5,2	9,1	17,1	16,9	31,9	49,8
	R60	$V_{Rk,s,fi}$	[kN]	1,8	3,6	2,9	3,7	8,4	4,4	6,8	12,2	12,6	22,8	35,5
	R90	$V_{Rk,s,fi}$	[kN]	1,4	2,4	2,3	2,5	5,0	3,6	4,5	7,3	8,4	13,6	21,2
	R120	$V_{Rk,s,fi}$	[kN]	1,2	1,7	2,0	2,0	3,3	3,2	3,3	4,8	6,2	9,0	14,1
Rupture de l'acier avec bras de levier														
Résistance caractéristique	R30	$M^0_{Rk,s,fi}$	[Nm]	2,2	5,0	4,5	6,7	15,2	8,1	14,1	26,6	35,9	67,6	132,0
	R60	$M^0_{\text{Rk},s,\text{fi}}$	[Nm]	1,8	3,7	3,8	4,8	10,8	6,9	10,5	19,0	26,8	48,2	94,1
	R90	$M^0_{Rk,s,fi}$	[Nm]	1,4	2,4	3,0	3,2	6,5	5,6	7,0	11,3	17,7	28,8	56,3
	R120	$M^0_{Rk,s,fi}$	[Nm]	1,2	1,8	2,6	2,6	4,3	5,0	5,2	7,5	13,2	19,1	37,3

En l'absence d'autres réglementations nationales, le coefficient partiel de sécurité pour la résistance à l'exposition au feu $\gamma_{M,fi} = 1,0$ est recommandé

Hilti HST4-R	
Performances Résistance caractéristique en cisaillement sous exposition au feu	Annexe C9