STRUCTURE EN ACIER ET MIXTE ACIER-BÉTON

Document technique

99003-01

Planchers collaborants acier-béton à base de plaques profilées

Document Technique 99003-01 Rev00
04/10/2021
| Etablissement public au service de l’innovation dans le bâtiment, le CSTB, Centre Scientifique et Technique du Bâtiment, exerce quatre activités clés : la recherche, l’expertise, l’évaluation, et la diffusion des connaissances, organisées pour répondre aux enjeux de la transition écologique et énergétique dans le monde de la construction. Son champ de compétences couvre les produits de construction, les bâtiments et leur intégration dans les quartiers et les villes.

Avec plus de 900 collaborateurs, ses filiales et ses réseaux de partenaires nationaux, européens et internationaux, le groupe CSTB est au service de l’ensemble des parties prenantes de la construction pour faire progresser la qualité et la sécurité des bâtiments. |
HISTORIQUE DES MODIFICATIONS

<table>
<thead>
<tr>
<th>N° de révision</th>
<th>Date application</th>
<th>Modifications</th>
</tr>
</thead>
</table>
| 00 | | Création du document :
| | | Reprise des informations techniques du référentiel QB 03 version 3. |
| | | Intégration des dispositions du cahier du CSTB 3730_V2. |
| | | Prise en compte de la norme NF EN 1090-4 |

TABLE DES MATIERES

1 OBJET DU PRESENT DOCUMENT TECHNIQUE 5
2 PRECISIONS CONCERNANT LES CARACTERISTIQUES DIMENSIONNELLES SUR LES PRODUITS FINIS ... 6
 2.1 Méthodologie du contrôle dimensionnel 6
 2.2 Tolérances géométriques applicables 6
3 CARACTERISTIQUES INFORMATIVES OPTIONNELLES 9
 3.1 Demande initiale ... 9
 3.2 Demande en cas de modification .. 9
4 MODALITES DE CONTROLE .. 10
 4.1 Admission .. 10
 4.1.1 Essais réalisés en usine lors de la visite d’admission 10
 4.1.2 Essais réalisés dans un laboratoire accrédité NF EN ISO/CEI 17065 (admission) .. 10
 4.2 Suivi .. 11
 4.2.1 Essais réalisés en usine lors d’une visite de suivi 11
 4.2.2 Essais réalisés dans un laboratoire accrédité NF EN ISO/CEI 17065 (suivi) .. 11
5 CONTROLE DE PRODUCTION EN USINE .. 12
 5.1 Cadre général .. 12
 5.2 Contrôle sur les constituants du produit 12
 5.2.1 Principe ... 12
 5.2.2 Cas des bobines de tôles ... 12
 5.3 Contrôle dimensionnel sur les produits finis 13
 5.3.1 En cours de fabrication .. 13
 5.3.2 Sur produits finis ... 14
6 ANNEXE 1 : ESSAIS EN PHASE DE COULAGE 15
 6.1 Caractérisation ... 15
 6.2 Interprétation ... 15
 6.3 Dispositif d’essai « flexion travée simple » 15
 6.4 Dispositif d’essai « Appui intermédiaire » 17
 6.5 Dispositif d’essai « Appui d’extrémité » 18
7 ANNEXE 2 : MODALITES D’ESSAIS EN PHASE MIXTE 19
 7.1 Dispositif d’essais .. 19
7.2 Préparation des corps d'épreuve

7.2.1 Dispositions générales

7.2.2 Dispositions particulières

7.2.3 Description des conditions de préparation, de mise en œuvre et mesures préliminaires des corps d'épreuve

7.3 Procédure de mise en charge

7.3.1 Dispositions générales

7.3.2 Dispositions particulières

7.3.3 Rapport d'essais
1 Objet du présent document technique

Le présent document technique concerne les contrôles à réaliser dans le cadre d’une nouvelle demande de certification (admission) et du suivi ultérieur pour les plaques profilées pour planchers collaborant acier-béton.

Les caractéristiques certifiées sont :

- Dimensionnelles :
 - Profondeur de bossage des âmes ;
 - Hauteur des ondes ;
 - Largeur des bacs.

Les caractéristiques informatives sont :

- Limite élastique d’acier ;
- Epaisseur de la plaque profilée (mm) ;
- Nature et épaisseur du revêtement de protection à la corrosion ;
- Diamètre de trous (mm) [Cas des bacs pré-percés]

Les caractéristiques informatives optionnelles sont :

- Vérifications en phase provisoire :
 - Moment d’inertie efficace \(I_{	ext{eff}} \) du bac (cm\(^4\)/m) ;
- Vérifications en phase provisoire – domaine élastique :
 - Comportement du bac sur appui intermédiaire \(M_{\text{max}} \) (kN.m/m), \(R_{\text{max}} \) (kN/m), \(M_0 \) (kN.m/m) et \(\alpha \);
 - Moment résistant positif en travée du bac \(M_{\text{Rd},k} \) (kN.m/m) ;
- Vérifications en phase provisoire – domaine post-élastique :
 - Loi de comportement du moment réagissant sur appui du fait de la formation d’une rotule plastique \(M_{\text{reag}}(\theta) \) ;
- Vérification en phase définitive de la collaboration bac/béton selon la méthode de la connexion partielle \(\tau_{u,Rd} \) (N/mm\(^2\))
- Vérification en phase définitive de la collaboration bac/béton selon la méthode \(m \) & \(k \) à l’ELU : \(m \) (N/mm\(^2\)) et \(k \) (N/mm\(^2\))
- Vérification en phase définitive de la collaboration bac/béton selon la méthode \(m \) & \(k \) à l’ELS : \(m_g \) (N/mm\(^2\)) et \(k_g \) (N/mm\(^2\))
- Vérification de la stabilité au feu
 - Epaisseur minimale nécessaire pour satisfaire au critère « I » d’isolation thermique en fonction de la durée de résistance au feu \(h_{\text{eff}} \) (mm)
 - Température \(\theta_s \) (°C) dans les barres d’armatures en fonction de l’enrobage \(u_3 \) (mm)
 - Température limite \(\theta_{\text{lim}} \) (°C)
 - Schéma des isothermes
2 Précisions concernant les caractéristiques dimensionnelles sur les produits finis

2.1 Méthodologie du contrôle dimensionnel
Le contrôle dimensionnel des éléments doit être effectué selon les indications du §12.3 de la norme NF EN 1090-4.

2.2 Tolérances géométriques applicables
Conformément à la NF EN 1090-4, deux types de tolérances géométriques sont définies :
- les tolérances essentielles dont dépendent la résistance mécanique et la stabilité de la structure terminée ;
- les tolérances fonctionnelles qui répondent à d'autres critères (bonne concordance d'assemblage, aspect...).
Les tolérances applicables pour chaque caractéristique géométrique suivie dans le cadre de la certification sont les suivantes :

Tableau 1

<table>
<thead>
<tr>
<th>CARACTÉRISTIQUES GEOMETRIQUES</th>
<th>MESURES SUR LE PRODUIT</th>
<th>TOLERANCES ESSENTIELLES (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profondeur du bossage des âmes (d_{ew}) (Caractéristique certifiée)</td>
<td>![Diagramme de profondeur du bossage]</td>
<td>-0,2/+0,4</td>
</tr>
</tbody>
</table>
| Hauteur des ondes \(h\) (Caractéristique certifiée) | ![Diagramme de hauteur des ondes] | Profils avec/sans raidisseurs
\(h \leq 50\) : ± 1
\(50 < h \leq 100\) : ± 1,5
\(h > 100\) : ± 2 |
Largeur utile w
(Caractéristique certifiée)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Tollerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>h ≤ 50</td>
<td>± 5</td>
</tr>
<tr>
<td>h > 50</td>
<td>± 0,1 x h et ≤ 15</td>
</tr>
</tbody>
</table>

Variation dans la largeur de la couverture (w)

\[
\frac{(w_1 + w_2)}{2} - (\text{tolérance sur la largeur utile}) \leq w_3 \leq \frac{(w_1 + w_2)}{2} + (\text{tolérance sur la largeur utile})
\]

Hauteur des raidisseurs

<table>
<thead>
<tr>
<th>Profils avec raidisseurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_r: +3 / -1</td>
</tr>
<tr>
<td>v_s: +2 / -0,15xv≤1</td>
</tr>
</tbody>
</table>

Pas b_R

<table>
<thead>
<tr>
<th>Profils avec/sans raidisseurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>h ≤ 50: ± 2</td>
</tr>
<tr>
<td>50 < h ≤ 100: ± 3</td>
</tr>
<tr>
<td>h > 100: ± 4</td>
</tr>
</tbody>
</table>

Rayon de courbure r

| ± 2 |

Diamètre de trou d_n

<table>
<thead>
<tr>
<th>Cas des bacs pré-percés</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤Ø5 ± 0,2</td>
</tr>
<tr>
<td>>Ø5 +0,2/-0,4</td>
</tr>
</tbody>
</table>

Position des trous

<p>| Cas des bacs pré-percés |
| ± 2 |</p>
<table>
<thead>
<tr>
<th>Écart de rectitude δ</th>
<th></th>
<th>2,0 mm/m de longueur de tôle sans dépasser 10 mm</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Longueur du panneau l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>L ≤ 3 000 :</td>
</tr>
<tr>
<td>+ 10/– 5</td>
</tr>
<tr>
<td>L > 3 000 :</td>
</tr>
<tr>
<td>+ 20/– 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ondulation de bord du recouvrement latéral D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>L’écart par rapport à un bord droit pour la retombée doit être défini comme la dimension D.</td>
</tr>
<tr>
<td>D ≤ ± 2 sur une longueur de 500</td>
</tr>
</tbody>
</table>
3 Caractéristiques informatives optionnelles

3.1 Demande initiale

Les essais sont à réaliser selon les annexes 1 et 2 ci-après.
L’interprétation des résultats d’essais est réalisée selon les Recommandations professionnelles pour la conception et la réalisation des planchers collaborants acier-béton. Elle peut être réalisée :
1) Par le demandeur ou une tierce partie désignée par lui puis vérifiées par l’organisme certificateur ;
2) Par l’organisme certificateur.
En cas de désaccord sur le mode d’interprétation, le Comité Particulier de l’application pourra être sollicité pour avis.

3.2 Demande en cas de modification

En cas de modification d’une des caractéristique géométrique d’un produit, les essais et leur interprétation seront à refaire.

<table>
<thead>
<tr>
<th>Caractéristique géométrique modifiée</th>
<th>Essai et interprétation à refaire</th>
<th>Evaluation à refaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profondeur du bossages des âmes d_{ew}</td>
<td>Essai "Flexion travée simple"</td>
<td>X</td>
</tr>
<tr>
<td>Hauteur des ondes h</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Largeur utile w</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hauteur des raidisseurs</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pas b_R</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Rayon de courbure r</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Diamètre de trou d_n</td>
<td>X</td>
<td>$X^{(*)}$</td>
</tr>
</tbody>
</table>

(*) : Optionnel. A refaire si la modalité a été utilisée initialement.
4 Modalités de contrôle

4.1 Admission

4.1.1 Essais réalisés en usine lors de la visite d’admission

Les essais suivants sont réalisés sur le site de production dans le cadre d’un audit d’admission.

Tableau 2

<table>
<thead>
<tr>
<th>Grandeur</th>
<th>Nombre d’échantillons par certificat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauteur h</td>
<td>3 produits finis par certificat</td>
</tr>
<tr>
<td>Bossage des âmes</td>
<td>3 produits finis par certificat</td>
</tr>
<tr>
<td>Largeur utile w</td>
<td>3 produits finis par certificat</td>
</tr>
</tbody>
</table>

Note concernant la sous-traitance d’essais :

Le demandeur/titulaire peut sous-traiter la réalisation d’essais à un laboratoire extérieur, à condition que cette sous-traitance fasse l’objet d’un contrat ou d’une commande. Cette sous-traitance ne peut être effectuée que si les conditions ci-après sont remplies :

- la sous-traitance d’essais n’entraîne pas de perturbation dans le processus de fabrication (en raison de délai de réponse par exemple);
- les conditions de sous-traitance d’essais sont formalisées dans le contrat ou la commande et doivent définir la méthode d’essai applicable, la fréquence d’essais, les délais de réponses demandés, la communication des résultats par écrit, la procédure en cas de résultat non conforme et le type d’équipement utilisé ;
- le laboratoire du sous-traitant où est réalisé l’essai doit être accrédité selon la norme NF EN ISO/CEI 17025, ou sinon le demandeur de l’essai (titulaire de la Marque de certification) doit s’assurer de la conformité des équipements utilisés (étalonnages, paramétrages d’essais, etc.) et de la compétence du personnel réalisant l’essai.

4.1.2 Essais réalisés dans un laboratoire accrédité NF EN ISO/CEI 17065 (admission)

Les essais suivants font l’objet d’un prélèvement pour envoi dans un laboratoire accrédité NF EN ISO/CEI 17025. Chaque élément prélevé comporte le tampon CSTB.

Note : les essais en phase provisoire peuvent également être réalisés sous la responsabilité du titulaire et sous la supervision d’une tierce partie compétente. Il convient de valider cette configuration au cas par cas auprès de l’organisme certificateur.

Tableau 3

<table>
<thead>
<tr>
<th>Grandeur</th>
<th>Nombre d’échantillons par certificat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moment d’inertie efficace (l_{\text{ef}}) du bac (si option choisie)</td>
<td>3 produits finis au minimum par certificat</td>
</tr>
<tr>
<td>Comportement du bac sur appui intermédiaire (M_{\text{max}}) (kN.m/m), (R_{\text{max}}) (kN/m), (M_0) (kN.m/m) et (\alpha) (si option choisie)</td>
<td>3 produits finis au minimum par certificat</td>
</tr>
<tr>
<td>Moment résistant positif en travée du bac (M_{\text{trd,k}}) (si option choisie)</td>
<td>3 produits finis au minimum par certificat</td>
</tr>
<tr>
<td>Réaction résistante sur appui d’extrémité du bac (V_{\text{rd,u}}) (si option choisie)</td>
<td>3 produits finis au minimum par certificat</td>
</tr>
<tr>
<td>Loi de comportement du moment réagissant sur appui du fait de la formation d’une rotule plastique (M_{\text{rég}(\theta)}) (si option choisie)</td>
<td>3 produits finis au minimum par certificat</td>
</tr>
</tbody>
</table>
4.2 Suivi

4.2.1 Essais réalisés en usine lors d’une visite de suivi

Les essais suivants sont réalisés sur le site de production dans le cadre d’un audit de suivi.

Tableau 4

<table>
<thead>
<tr>
<th>Grandeur</th>
<th>Nombre d’échantillons par certificat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauteur h</td>
<td>1 produit fini par certificat</td>
</tr>
<tr>
<td>Bossage des âmes</td>
<td>1 produit fini par certificat</td>
</tr>
<tr>
<td>Largeur utile w</td>
<td>1 produit fini par certificat</td>
</tr>
</tbody>
</table>

4.2.2 Essais réalisés dans un laboratoire accrédité NF EN ISO/CEI 17065 (suivi)

Les grandeurs visées au §4.1.2 sont évaluées dans le cadre de l’admission, mais ne sont plus contrôlées par la suite dans le cadre du suivi.
5 Contrôle de production en usine

5.1 Cadre général

Les contrôles internes exercés par le fabricant ont pour but de s’assurer de la qualité des produits qu’il commercialise.

La nature et la fréquence de ces contrôles ainsi que leur traçabilité fait partie du CPU (Contrôle de Production Usine) de l’usine.

Le CPU devra être validé au moment de l’instruction puis vérifié lors des audits de suivi.

Dans le cadre de la certification QB, ces contrôles représentent l’un des éléments fondamentaux de l’attribution et du maintien de la certification.

Ces contrôles portent sur :

- les matières premières,
- la fabrication,
- le matériel,
- les produits finis.

Le demandeur/titulaire doit disposer des moyens humains, matériels et organisationnels nécessaires aux contrôles et essais définis par les normes, documents de référence et spécifications complémentaires citées dans le référentiel QB03. Le demandeur/titulaire s’engage à procéder à un contrôle fiable et régulier de sa production :

Le contrôle interne doit être en place depuis au moins trois mois avant l’instruction de la demande de certification au CSTB.

5.2 Contrôle sur les constituants du produit

5.2.1 Principe

Le demandeur/titulaire est tenu d’exercer un contrôle à leur réception et en tous cas avant utilisation sur l’ensemble des constituants entrant dans la fabrication de ses produits certifiés.

Le CPU de l’usine doit comporter un volet relatif au contrôle interne « réception » établi par le demandeur/titulaire, qui intègre :

- les modalités de contrôle des produits à réception permettant d’apprécier leurs conformités et/ou leurs régularités par rapport aux caractéristiques attendues,
- les règles d’échantillonnage des produits prélevés (le cas échéant).

Ce contrôle prend en considération toute action de maîtrise exercée par le fournisseur, par exemple : fiche de conformité résultant d’un contrôle systématique avant livraison imposé par le demandeur/titulaire à son fournisseur, fournisseur certifié selon la norme NF EN ISO 9001 pour les fabrications concernées ou fournitures certifiées, etc.

5.2.2 Cas des bobines de tôle

Le constituant principale des plaques profilées pour planchers collaborant acier-béton.

A minima, le contrôle doit porter sur

- la limite d’élasticité de l’acier des bobines,
- l’épaisseur de la tôle.

5.2.2.1 Contrôle de la limite d’élasticité

Le contrôle de la limite d’élasticité (cf. EN 10002-1) peut se faire de deux manières :

- Contrôle par le fabricant
Une plaque d’environ 20x20cm est découpée dans chaque bobine de tôle galvanisée ou galvanisée et prélaquée prévue pour le profilage. À partir de cette plaque on prélève une éprouvette de 20mm de largeur découpée dans la direction du laminage qu’on soumet à l’essai de traction. Pour déduire de cet essai la limite d’élasticité de la tôle, on considère comme épaisseur de l’éprouvette, l’épaisseur réelle de la tôle nue.

- **Contrôle de la valeur garantie par le certificat des fournisseurs de bobine**

Le contrôle des constituants entrant dans la fabrication des produits certifiés peut être simplifié si le demandeur/titulaire impose contractuellement un contrôle systématique avant livraison de son (ses) fournisseur(s) et s’il dispose pour chaque lot livré :

- du certificat de contrôle 3.1 suivant NF EN 10204,
- ou des fiches d’analyse si le fournisseur est certifié selon la norme NF EN ISO 9001 pour les fabrications concernées.

Les bobines galvanisées doivent être conformes aux normes NF EN 10346 et NF EN 10143.
Les bobines galvanisées pré laquées doivent être conformes aux normes NF EN 10169 et NF EN 10143.

5.2.2.2 Contrôle de l’épaisseur de la tôle

L’épaisseur de la tôle est vérifiée pour chaque bobine, conformément à la NF EN 10143, en considérant les valeurs des colonnes « tolérances spéciales » des tableaux 1 et 2 paragraphe 6 de la norme précitée, ou « tolérances spéciales » de la norme NF P34 310.

<table>
<thead>
<tr>
<th>Épaisseur nominale t</th>
<th>Tolérances spéciales (S) pour une largeur nominale w</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>£ 1 200 – £ 1 500 – > 1 500</td>
</tr>
<tr>
<td>0,40 < t £ 0,60</td>
<td>± 0,040</td>
</tr>
<tr>
<td>0,60 < t £ 0,80</td>
<td>± 0,045</td>
</tr>
<tr>
<td>0,80 < t £ 1,00</td>
<td>± 0,050</td>
</tr>
<tr>
<td>1,00 < t £ 1,20</td>
<td>± 0,060</td>
</tr>
<tr>
<td>1,20 < t £ 1,60</td>
<td>± 0,070</td>
</tr>
</tbody>
</table>

La mesure de l’épaisseur est réalisée soit par le fabricant, soit par le fournisseur de bobines si elle est intégrée au certificat 3.1 suivant NF EN 10204 pour chaque lot livré.

5.3 Contrôle dimensionnel sur les produits finis

Les grandeurs indiquées dans le Tableau 1 doivent être contrôlées dans le cadre du suivi de production en usine.

Le demandeur/titulaire doit enregistrer les résultats des contrôles précédents dans les registres sous forme de tableaux avec les indications ci-dessus. Les registres et leur exploitation peuvent être informatisés. Ils seront prélevés par les auditeurs lors des contrôles en usine sur une période d’un mois.

5.3.1 En cours de fabrication

Le demandeur/titulaire doit assurer un contrôle des principales caractéristiques géométriques en cours de fabrication **lors de chaque changement de lot**.

Un lot correspond à un même produit, un même numéro de bobine et un même réglage machine. Il doit également s’assurer du bon contenu du marquage et de sa lisibilité.

Le contrôle en cours de fabrication concerne le produit dans ses états intermédiaires aux principales étapes de sa fabrication et le suivi des consignes de réglage du matériel de production (machines de fabrication, outillages).

Des instructions de contrôle doivent être formalisées et mises à la disposition des opérateurs. Les résultats des contrôles sont enregistrés à chaque contrôle. Si des résultats de contrôles indiquent que le produit ne
satisfait pas aux exigences du présent Référentiel de Certification, les actions correctives nécessaires doivent être immédiatement mises en œuvre.

5.3.2 Sur produits finis

Le demandeur/titulaire est tenu de vérifier les caractéristiques des produits finis avant leur livraison et est responsable de l’organisation de ce contrôle. Les contrôles et essais sur produits finis réalisés par le demandeur/titulaire sont effectués suivant les normes et les spécifications complémentaires citées dans le présent référentiel de certification.

Les mesures des diverses caractéristiques contrôlées sont effectuées selon les modes opératoires définis dans les normes de référence citées dans le paragraphe 2.2 du présent référentiel de certification.

Les contrôles sur produits finis (3 points de contrôle répartis sur la longueur) sont exécutés par le demandeur/titulaire lui-même dans son unité de fabrication à raison d’un produit par jour et par certificat.

Le demandeur/titulaire devra obligatoirement procéder à des prélèvements d’échantillons effectués au hasard en fin de chaîne de fabrication et réaliser les contrôles et essais sur ces échantillons. Les échantillons prélevés doivent refléter la variété des dimensions des produits faisant l’objet du présent référentiel de certification.

Le mode de prélèvement des échantillons nécessaires aux essais doit être décrit précisément dans le plan qualité du demandeur/titulaire et ne doit pas être laissé à la seule appréciation de l’opérateur.

Le demandeur/titulaire doit enregistrer les résultats des contrôles précédents. Si les résultats des contrôles normaux se révèlent insuffisants, ces derniers doivent être renforcés et les causes de défaillance doivent être décelées afin d’y porter remède en complétant, si nécessaire, les contrôles de fabrication.
6 Annexe 1 : Essais en phase de coulage

6.1 Caractérisation

Les épaisseurs de tôles et la limite élastique doivent être caractérisées selon la NF EN 1993-1-3 Annexe A.6.2. Deux dimensions supplémentaires doivent être mesurées et comparées avec les dimensions nominales indiquées sur les plans fournis avec les corps d’épreuve :

- Largeur du bac ;
- Hauteur d’onde.

6.2 Interprétation

Les écarts entre les valeurs nominales et les valeurs mesurées sont pris en compte dans l’interprétation (NF EN 1993-1-3 Annexe A.6.2), suivant les étapes suivantes :

\[R_{adj} = \frac{R_{obs}}{\mu_R} \]

Où :

\(\mu_R \) est le coefficient d’ajustement de la résistance (NF EN 1993-1-3 Annexe A.6.2) ;

\(R_{obs} \) est le résultat d’essai observé ;

\(R_{adj} \) est le résultat d’essai corrigé.

Les valeurs caractéristiques \(R_k \) sont déterminées par \(R_k = R_m + ks \)

Où :

\(s \) est l’écart-type ;

\(R_m \) est la valeur moyenne des résultats d’essai corrigés ;

\(k \) est le facteur de correction défini selon le tableau ci-dessous (NF EN 1990, Annexe D) :

\[\text{Tableau 5 Coefficient } k \text{ à utiliser pour l'interprétation des valeurs d'essais} \]

<table>
<thead>
<tr>
<th>Nombre d’essais</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>3,37</td>
<td>2,63</td>
<td>2,34</td>
<td>2,18</td>
<td>2,01</td>
<td>1,92</td>
<td>1,77</td>
<td>1,73</td>
</tr>
</tbody>
</table>

Les valeurs de calculs sont déterminées par \(R_d = R_u / \gamma_m \)

Avec \(\gamma_m \) le coefficient partiel pour la résistance défini selon les cas par 1,00 ou 1,25 (cf. EN 1993-1-3).

6.3 Dispositif d’essai « flexion travée simple »

Deux capteurs sont disposés à mi-portée, en fonds de nervures. La valeur de flèche retenue est la moyenne des deux valeurs.

La portée préconisée doit viser une flèche sous poids propre de la dalle la moins épaisse, avec l’épaisseur de tôle minimum, d’au moins L/180, calculée avec une inertie totale.

Les maquettes sont posées librement sur les appuis articulés.

Le nombre d’essais est au minimum de 2 par épaisseur pour la même portée, 4 essais au moins en tout.
Le chargement est monotone croissant jusqu’à la ruine. La vitesse de chargement doit être telle que la ruine ne doit pas être atteinte avant 5 minutes.

Description calage : possibilité de caler avec peigne + sable

Les dispositifs sur appuis peuvent être constitués d’un plat (80 ou 100 mm, épaisseur 8 mm minimum) avec possibilité de fixation de la tôle sur le plat.

Il est également possible de caler au moyen d’un peigne et de sable.

Les flûtes métalliques sont constituées de plats (largeur 30 mm, épaisseur 2< mm) ou de cornières (30 mm x 30 mm x 1 mm), fixées aux nervures de rives de la plaque par rivets aveugles ou vis à métal.

Elles sont placées perpendiculairement à la direction des nervures principales.

Ces distances peuvent être adaptées à la taille de la maquette.

Interprétation :
La charge de ruine mesurée est la charge totale.
La largeur de tôle à considérer est la largeur utile du profil.
Le rapport d’essai doit préciser si la valeur initiale des déplacements est relevée avant ou après la pose du palonnier de chargement. La partie de la masse du palonnier qui n’est pas prise en compte dans la mesure de l’effort devra être indiquée.

La valeur de l’inertie est déterminée par la moyenne d’au moins deux résultats individuels.

La valeur de la résistance est déterminée en tant que valeur caractéristique obtenue sur l’ensemble des essais d’une même famille.

L’extrapolation linéaire pour des épaisseurs supérieures à celles testées est possible dans la limite de 26 % (variation maximale de l’épaisseur).
6.4 Dispositif d’essai « Appui intermédiaire »

Chaque configuration (portée; largeur d’appui; épaisseur du profil) doit être répétée au moins deux fois. L’interprétation est faite sur une famille ayant un seul paramètre variable.

La portée S peut être prise égale :
à 4h + be minimum, h étant la hauteur du profil ;
à 0,4 Lmax maximum, Lmax étant la portée maximale visée.

Les dispositions de calage sur les appuis d’extrémités peuvent être prises à l’identique de l’essai de flexion simple.

Le chargement est monotone croissant. La vitesse de chargement doit être telle que la ruine ne doit pas être atteinte avant 5 minutes. L’essai doit être poursuivi après avoir atteint la charge maximale, jusqu’à l’obtention de S/20. La vitesse de déplacement de traverse peut être augmentée après avoir atteint la charge maximale.

Le minimum de la largeur d’appui be doit être égal au moins à 60 mm. Le maximum doit être de 200 mm.

Le découpage des ailes est admis, de manière à avoir un nombre entier de nervures (au milieu du sommet de nervure). Dans le cas contraire, on dispose de flûtes en partie supérieure.

Interprétation :

L’interpolation est possible pour les paramètres suivants :
- l’épaisseur de la tôle ;
- la largeur d’appui ;
- le couple (M;R).

L’extrapolation n’est pas admise.

L’extrapolation linéaire pour des épaisseurs supérieures à celles testées est possible dans la limite de 26 % (variation maximale de l’épaisseur).
6.5 Dispositif d’essai « Appui d’extrémité »

Chaque configuration (largeur d’appui; épaisseur du profil) doit être répétée au moins deux fois, avec un nombre d’essais minimal de 4 au total. L’interprétation est faite sur une famille ayant un seul paramètre variable.

Le chargement est monotone croissant, avec une vitesse de chargement. La vitesse de chargement doit être telle que la ruine ne doit pas être atteinte avant 5 minutes. L’essai doit être poursuivi après avoir atteint la charge maximale. La vitesse de déplacement de traverse peut être augmentée après avoir atteint la charge maximale.

La réaction d’appui peut être déduite par calcul, ou par mesure directe de l’effort sur appui.

La portée L est prise égale à 3 (h + 150).

Nota :
Le dispositif proposé a pour objectif d’éviter l’écrasement des âmes sous la plaque de chargement.

Le dispositif selon la figure A.6 de l’EN 1993-1-3 est autorisé.

Interprétation :
Les résultats des essais peuvent être utilisés tels quels (sans extrapolation) pour des profondeurs d’appuis et des épaisseurs de tôles supérieures à celles de l’essai.

L’interpolation est possible pour les paramètres suivants :

- l’épaisseur de la tôle ;
- la largeur d’appui.

L’extrapolation linéaire pour des épaisseurs supérieures à celles testées est possible dans la limite de 26 % (variation maximale de l’épaisseur).
Annexe 2 : Modalités d'essais en phase mixte

7.1 Dispositif d'essais

Le dispositif d'essais doit être en conformité avec le paragraphe B.3.2 de NF EN 1994-1-1 :

![Diagram of flexural test device](image)

Figure A4 – Dispositif d'essais de flexion

7.2 Préparation des corps d'épreuve

7.2.1 Dispositions générales

La préparation des corps d'épreuve doit être réalisée en conformité avec les dispositions de la NF EN 1994-1-1.

B.3.3 complétée par la NF EN 1994-1-1/AN.

7.2.2 Dispositions particulières

Le schéma de principe des dalles d'essais est montré sur la Figure A5.

(1) La disposition des flûtes est montrée de façon symbolique, correspondant à la portée d'essai L.

![Section transversale A-A](image)

Figure A5 – Dispositif d’essai
7.2.3 Description des conditions de préparation, de mise en œuvre et mesures préliminaires des corps d’épreuve

(1) Les semelles de rives du profil peuvent être découpées à la largeur utile.
(2) La largeur du béton est égale à la largeur utile du profil.
(3) Dans le cas du protocole basé sur le chargement cyclique, la surface des tôles est « brute de profilage », sans graissage ni dégraissage.
(4) Alternativement, conformément à la NF EN 1994-1-1/ AN, lorsqu’il est recherché la connaissance systématique du chargement de glissement initial 0,1 mm sur chacun des corps d’épreuve rendus non adhérents au béton il est procédé à un chargement statique seul. Les tôles sont huilées avec de l’huile insoluble dans l’eau.
(6) Les âmes extérieures des plaques peuvent être maintenues latéralement entre les appuis et les initiateurs de fissures afin qu’elles se comportent comme dans des dalles plus larges. Par exemple, dans les zones extérieures sur une longueur d’environ L/4 peuvent être disposées des flûtes en cornières pliées. Les pointes des fixations des flûtes sur le profil doivent être noyées dans des blocs en polystyrène 20 x 40 x 40, pour éviter tout contact direct des vis avec le béton.
(7) Un treillis soudé PAF R est placé sur l’ensemble de la surface du corps d’épreuve et calé pour ajuster l’enrobage des fils longitudinaux à 20 mm.
(8) Les douilles de levage sont scellées approximative-ment à mi-distance entre les initiateurs de fissures et les extrémités de la dalle.
(9) Dans le cas où le béton utilisé est issu de gâchées différentes, chaque gâchée devra être caractérisée.
(10) Pour chaque groupe de corps d’épreuve soumis à des essais dans une période de 3 jours, au moins quatre éprouvettes cylindriques sont caractérisées dans cet intervalle de temps.
(11) Dans chacune des tôles utilisées pour réaliser les dalles d’essai, une éprouvette est prélevée pour déterminer l’épaisseur nette d’acier, la résistance à la traction et la limite d’élasticité de la tôle.
(12) La géométrie du profil est relevée (hauteur de nervures et module des nervures).
(13) Les dimensions des dalles (épaisseur, longueur et largeur) sont mesurées à proximité de chaque extrémité.
(14) Les largeurs des plaques d’appuis et d’application des charges linéiques ne doivent pas dépasser 100 mm.
(15) La distance entre l’axe de l’appui et l’extrémité de la dalle ne doit pas dépasser 100 mm.
(16) Il est recommandé de mesurer le poids du corps d’épreuve au moment de la mise en place sur le banc de flexion.
(17) Lorsque le corps d’épreuve est en place sur les plats qui doivent le supporter aux appuis, il est procédé à un calage de chacune des nervures de manière à corriger toute distorsion du corps d’épreuve créée par exemple sur le banc de coulage avant prise du béton.
(18) Les capteurs de glissement d’extrémité sont soli-daires du béton et le palpeur s’appuie sur l’aile libre d’une équerre scellée sur la semelle haute du profil en retrait de la tranche de la tôle. Il est usuel de placer un seul capteur à chaque extrémité.
(19) La flèche du corps d’épreuve est observée au milieu de la portée sur deux fonds de nervures choisies symétriquement par rapport à l’axe du corps d’épreuve.
(20) Il est évité que la charge obtenue des traverses recevant l’action du vérin soit exercée sur le corps central de la dalle entre les initiateurs de fissures. Dans le cas contraire le cisaillement du béton au-dessus des initiateurs de fissures peut entacher l’interprétation des résultats.
7.3 Procédure de mise en charge

7.3.1 Dispositions générales
La procédure de mise en charge doit être conforme à l’EN 1994-1-1, B.3.4 et à la NF EN 1994-1-1/AN.

7.3.2 Dispositions particulières

7.3.2.1 m&k

1) Lors des essais utilisés pour déterminer les facteurs m et k, on doit réaliser de préférence au moins deux groupes de trois essais. Pour un groupe la portée doit être aussi longue que possible, tout en provoquant toujours la ruine par cisaillement longitudinal. Pour l’autre groupe la portée doit être aussi courte que possible, mais au moins égale à trois épaisseurs de la dalle, tout en provoquant toujours la ruine par cisaillement longitudinal.

2) Dans le cas de tôles huilées, la procédure de mise en charge comporte un retour à zéro de la charge appliquée lorsqu’apparaît un premier glissement d’extrémité atteignant ou dépassant 0,1 mm.

3) Dans le cas de tôles non huilées, on appliquera les modalités de chargement du paragraphe suivant.

7.3.2.2 Méthode τ

Lors des essais utilisés pour déterminer le facteur τu, au moins quatre essais sur des corps d’essai de même épaisseur doivent être réalisés.

Pour un essai, on doit adopter la longueur la plus courte possible, mais égale au moins à trois épaisseurs de la dalle, tout en provoquant toujours la ruine par cisaillement longitudinal.

Cet essai n’est utilisé que pour le classement du comportement conformément à B.3.1 de la NF EN 1994-1-1.

Pour les essais restants, la longueur doit être la plus longue possible, tout en provoquant toujours la ruine par cisaillement longitudinal.

7.3.2.3 Procédure de mise en charge

1) Si deux groupes de trois essais sont effectués,, un corps d’essai est soumis à l’essai statique. La charge totale de ruine Wt sert à déterminer le niveau du chargement cyclique des autres corps d’essai.

2) Sur les autres corps d’essai, un essai préliminaire statique est effectué jusqu’à un niveau de G + 0,6 (Wt - G) afin de pouvoir établir la courbe de glissement. G est le poids propre de la dalle et du dispositif d’essais.

3) Chargement cyclique : la dalle est soumise à un chargement cyclique entre la valeur basse égale à G + 0,2 (Wt - G) et la valeur haute égale à G + 0,6 (Wt - G).

4) On applique 5 000 cycles de chargement sur une durée d’au moins 3 heures.

5) À la suite du chargement cyclique, la dalle est soumise à un essai statique au cours duquel la charge appliquée est augmentée progressivement, afin que la charge maximale Wt ne soit pas atteinte en moins d’une heure.

6) Le chargement doit être prolongé après décroissance de la charge supportée, si possible jusqu’à produire une flèche dépassant d’au moins 30 % la flèche correspondant à la charge maximale observée, retenue alors dans l’appréciation de Wt.

7.3.3 Rapport d’essais

Relevés à consigner dans le rapport d’essais :
- Résistance des éprouvettes prélevées dans les tôles
- Résistance du béton au moment des essais
- Dimensions des tôles cotes du profil et épaisseurs d’acier (nues)
- Dimensions des dalles
- Poids des accessoires, s’il n’est pas équilibré sur le vérin
- Relations charge-flèche et charge-glissement (valeurs numériques et diagrammes)
- Charge au premier glissement d’extrémité atteignant ou dépassant le seuil de 0,1 mm
- Charge au glissement d’extrémité atteignant ou dépassant 0,5 mm
- Charge maximale W_t
- Charge correspondant à la flèche L/50 (si atteinte)
- Flèche sous la charge maximale