

# Centre Scientifique et Technique du Bâtiment

84 avenue Jean Jaurès CHAMPS-SUR-MARNE F-77447 Marne-la-Vallée Cedex 2

Tél.: (33) 01 64 68 82 82 Fax: (33) 01 60 05 70 37





# **European Technical Assessment**

ETA-12/0369 of 23/04/2015

English translation prepared by CSTB - Original version in French language

#### **General Part**

Nom commercial Trade name

MFT EKSPANJONSBOLT ELF

Famille de produit Product family

Cheville métallique en acier galvanisé, à expansion par vissage à couple contrôlé, de fixation dans le béton non

fissuré:

diamètres M6, M8, M10, M12, M14 et M16

Torque-controlled expansion anchor, made of stainless

steel, for use in uncracked concrete: sizes M6, M8, M10, M12, M14 and M16

**Titulaire** Manufacturer Hitachi Power Tools Norway AS

Kjeller Vest 7 Postboks 124 2027 Kieller Norway

Usine de fabrication Manufacturing plants

Plant 1

Cette evaluation contient: This Assessment contains 13 pages incluant 10 annexes qui font partie intégrante de cette évaluation

13 pages including 10 annexes which form an integral part of

this assessment

Base de l'ETE Basis of ETA

ETAG 001, Version April 2013, utilisée en tant que EAD

ETAG 001, Edition April 2013 used as EAD

Cette evaluation remplace: This Assessment replaces

ATE 12/0369 valide du 06/08/2012 au 19/02/2015

ETA-12/0369 with validity from 06/08/2012 to 19/02/2015

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

# **Specific Part**

#### 1 Technical description of the product

The MFT EKSPANJONSBOLT ELF anchor in the range of M6 to M16 is an anchor made of galvanised steel, which is placed into a drilled hole and anchored by torque-controlled expansion. The illustration and the description of the product are given in Annexes A.

# 2 Specification of the intended use

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annexes B.

The provisions made in this European technical assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

### 3 Performance of the product

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                | Performance  |
|---------------------------------------------------------|--------------|
| Characteristic tension resistance acc. ETAG001, Annex C | See Annex C1 |
| Characteristic shear resistance acc. ETAG001, Annex C   | See Annex C2 |
| Characteristic tension resistance acc. CEN/TS 1992-4    | See Annex C3 |
| Characteristic shear resistance acc. CEN/TS 1992-4      | See Annex C4 |
| Displacements                                           | See Annex C5 |

#### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance                                  |  |  |  |
|--------------------------|----------------------------------------------|--|--|--|
| Reaction to fire         | Anchorages satisfy requirements for Class A1 |  |  |  |

### 3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances contained in this European technical approval, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

#### 3.4 Safety in use (BWR 4)

For Basic requirement Safety in use the same criteria are valid as for Basic Requirement Mechanical resistance and stability.

# 3.5 Protection against noise (BWR 5)

Not relevant.

# 3.6 Energy economy and heat retention (BWR 6)

Not relevant.

### 3.7 Sustainable use of natural resources ( (BWR 7)

For the sustainable use of natural resources no performance was determined for this product.

# 3.8 General aspects relating to fitness for use

Durability and Serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

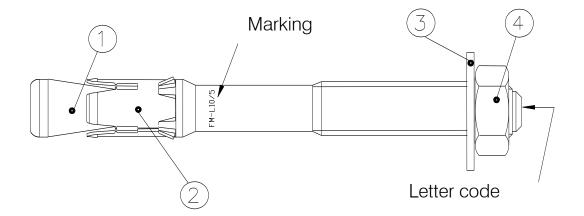
# 4 Assessment and verification of constancy of performance (AVCP)

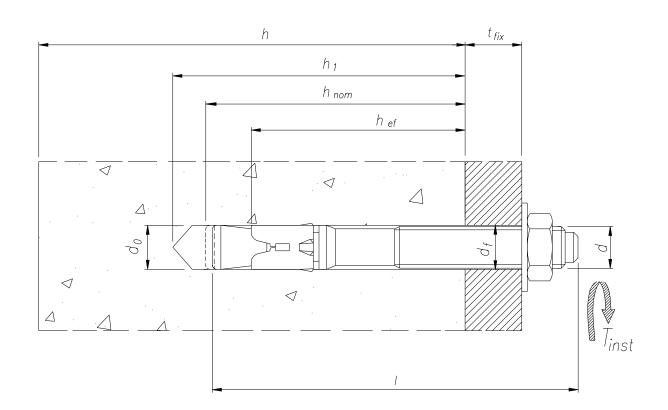
According to the Decision 96/582/EC of the European Commission<sup>1</sup>, as amended, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

| Product                            | Intended use                                                                                                                    | Level or class | System |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------|--------|
| Metal anchors for use in concrete. | For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the works) or heavy units. | _              | 1      |

# 5 Technical details necessary for the implementation of the AVCP system

Technical details necessary for the implementation of the Assessment and verification of constancy of performance (AVCP) system are laid down in the control plan deposited at Centre Scientifique et Technique du Bâtiment.


The manufacturer shall, on the basis of a contract, involve a notified body approved in the field of anchors for issuing the certificate of conformity CE based on the control plan.


#### The original French version is signed by

Charles Baloche Technical Director

<sup>.</sup> 

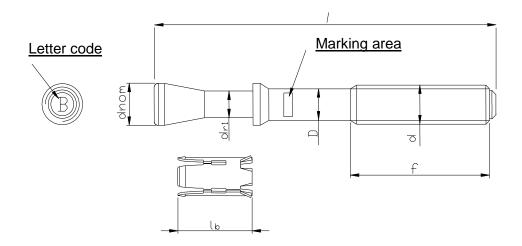
# Schemas of the assembled anchor and of the anchor in use:





h<sub>ef</sub>: effective embedment depth

 $h_{\text{nom}}$ : embedment depth  $h_1$ : drilling hole depth  $t_{\text{fix}}$ : fixture thickness


# MFT EKSPANSJONSBOLT ELF

# **Product description**

Assembled and in-use anchor

Annex A1

# Assembled anchor: bolt and expansion sleeve



Marking on the bolt:

FM L<sub>thr</sub> X/Y

with  $L_{thr} = S$  (small) or L (long), length of the threaded part X = thread diameter (d) and  $Y = fixture thickness (t_{fix})$ 

e.g. FM-L 12/10 (size M12x100; long threaded=55 mm)

A letter code corresponding to the total length of the bolt is punched on the head of the bolt.

**Table 1: Materials** 

| Part | Designation   | Material                                                                                        | Protection                         |
|------|---------------|-------------------------------------------------------------------------------------------------|------------------------------------|
| 1    | Bolt          | M6, M8, M10 : 19MnB4 EN 10269,cold formed M12, M14, M16 : C30 B KD Euronorm 119-74, cold formed | ISO 4042<br>Galvanised<br>(≥ 5 µm) |
| 2    | Sleeve        | M6 to M12 : EN 10132-4, cold formed M14 and M16 : EN 10130, cold formed                         | ISO 2081<br>Galvanised             |
| 3    | Washer        | DIN 125/1                                                                                       | (≥ 5 μm)                           |
| 4    | Hexagonal nut | EN 24032, steel grade 8                                                                         | ISO 4042<br>Galvanised<br>(≥ 5 µm) |

| MFT EKSPANSJONSBOLT ELF                          |          |
|--------------------------------------------------|----------|
| Product description Parts, materials and marking | Annex A2 |

**Table 2: Anchor dimensions** 

|               | Anchor size    | Marking     | L    | t <sub>fix</sub> | f    | d <sub>r1</sub> | d <sub>nom</sub> | I <sub>bague</sub> | Letter |
|---------------|----------------|-------------|------|------------------|------|-----------------|------------------|--------------------|--------|
|               | 711101101 0120 | mannig      | [mm] | [mm]             | [mm] | [mm]            | [mm]             | [mm]               | code   |
|               | M6x65          | FM-S 6/15   | 65   | 15               | 18   |                 |                  |                    | В      |
|               | M6x65          | FM-L 6/15   | 65   | 15               | 38   |                 |                  |                    | В      |
| 9W            | M6x85          | FM-S 6/35   | 85   | 35               | 18   | 10,2            | 6                | 4,2                | С      |
|               | M6x85          | FM-L 6/35   | 85   | 35               | 58   |                 |                  |                    | С      |
|               | M6x100         | FM-L 6/50   | 100  | 50               | 58   |                 |                  |                    | D      |
|               | M8x65          | FM-L 8/7    | 65   | 7                | 35   |                 |                  |                    | В      |
|               | M8x75          | FM-S 8/15   | 75   | 15               | 35   |                 |                  |                    | С      |
|               | M8x75          | FM-L 8/15   | 75   | 15               | 45   |                 |                  |                    | С      |
|               | M8x90          | FM-S 8/30   | 90   | 30               | 35   |                 |                  |                    | D      |
| 8<br><b>M</b> | M8x90          | FM-L 8/30   | 90   | 30               | 60   | 11,5            | 8                | 5,8                | D      |
| ≥             | M8x115         | FM-S 8/55   | 115  | 55               | 40   | 11,5            |                  | 3,0                | E      |
|               | M8x115         | FM-L 8/55   | 115  | 55               | 80   |                 |                  |                    | Е      |
|               | M8x135         | FM-S 8/75   | 135  | 75               | 40   |                 |                  |                    | F      |
|               | M8x135         | FM-L 8/75   | 135  | 75               | 85   |                 |                  |                    | F      |
|               | M8x165         | FM-L 8/105  | 165  | 105              | 85   |                 |                  |                    | G      |
|               | M10x75         | FM-S 10/5   | 78   | 5                | 78   |                 |                  | 10 7,4             | В      |
|               | M10x90         | FM-S 10/20  | 90   | 20               | 40   |                 | 10               |                    | С      |
|               | M10x90         | FM-L 10/20  | 90   | 20               | 52   |                 |                  |                    | С      |
| M10           | M10x120        | FM-S 10/50  | 120  | 50               | 10   | 14,0            |                  |                    | D      |
| _             | M10x120        | FM-L 10/50  | 120  | 50               | 82   |                 |                  |                    | D      |
|               | M10x145        | FM-L 10/70  | 145  | 70               | 82   |                 |                  |                    | Е      |
|               | M10x170        | FM-L 10/100 | 173  | 100              | 82   |                 |                  |                    | F      |
|               | M12x100        | FM-S 12/10  | 100  | 10               | 45   |                 |                  |                    | В      |
|               | M12x100        | FM-L 12/10  | 100  | 10               | 55   |                 |                  |                    | В      |
|               | M12x110        | FM-S 12/20  | 110  | 20               | 45   |                 |                  |                    | С      |
| M12           | M12x110        | FM-L 12/20  | 110  | 20               | 65   | 17              | 12               | 8,8                | C      |
| Ξ             | M12x135        | FM-S 12/45  | 135  | 45               | 50   | 17              | 12               | 0,0                | D      |
|               | M12x135        | FM-L 12/45  | 135  | 45               | 90   |                 |                  |                    | D      |
|               | M12x160        | FM-S 12/70  | 160  | 70               | 90   |                 |                  |                    | Е      |
|               | M12x185        | FM-S 12/100 | 188  | 100              | 90   |                 |                  |                    | F      |
|               | M14x100        | FM-L 14/3   | 103  | 3                | 50   |                 |                  |                    | Α      |
|               | M14x110        | FM-L 14/10  | 110  | 10               | 60   |                 |                  |                    | В      |
| M14           | M14x130        | FM-L 14/30  | 130  | 30               | 65   | 19,5            | 14               | 10,6               | С      |
| Σ             | M14x150        | FM-L 14/50  | 150  | 50               | 90   | 19,5            | 14               | 10,0               | D      |
|               | M14x170        | FM-L 14/70  | 170  | 70               | 90   |                 |                  |                    | Е      |
|               | M14x200        | FM-L 14/100 | 200  | 100              | 90   |                 |                  |                    | F      |
|               | M16x125        | FM-S 16/10  | 125  | 10               | 65   |                 |                  |                    | Α      |
| M16           | M16x145        | FM-S 16/30  | 145  | 30               | 85   | 22              | 16               | 12.6               | В      |
| È             | M16x175        | FM-S 16/60  | 175  | 60               | 85   | 23              | 16               | 12,6               | С      |
|               | M16x215        | FM-S 16/100 | 215  | 100              | 85   |                 |                  |                    | D      |

| MFT EKSPANSJONSBOLT ELF |          |
|-------------------------|----------|
| Product description     | Annex A3 |
| Anchor dimensions       |          |

# Specifications of intended use

# Anchorages subject to:

Static and quasi-static loads.

# **Base materials:**

- Non-cracked concrete.
- Reinforced or unreinforced normal weight concrete of strength classes C20/25 at least to C50/60 at most according to EN 206: 2000-12.

# **Use conditions (Environmental conditions):**

• Structures subject to dry indoor conditions, indoor with temporary condensation.

# Design:

- The anchorages are designed in accordance with the ETAG001 Annex C "Design Method for Anchorages" or CEN/TS 1992-4-4 " Design of fastenings for use in concrete" under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.

# **Installation:**

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools.
- Effective anchorage depth, edge distances and spacing not less than the specified values without minus tolerances.
- Hole drilling by hammer drill.
- Cleaning of the hole of drilling dust.
- Application of specified torque moment using a calibrated torque wrench.
- In case of aborted hole, drilling of new hole at a minimum distance of twice the depth of the aborted hole, or smaller distance provided the aborted drill hole is filled with high strength mortar and no shear or oblique tension loads in the direction of aborted hole.

| MFT EKSPANSJONSBOLT ELF        |          |
|--------------------------------|----------|
| Intended Use<br>Specifications | Annex B1 |

**Table 3: Installation data** 

|     | Anchor   | <b>L</b> (0) | Letter code | <b>d</b> <sub>cut</sub> (1) | <b>d</b> <sub>f</sub> (2) | T <sub>inst</sub> (3) | <b>h</b> <sub>min</sub> (4) | <b>h</b> <sub>1</sub> (5) | h <sub>nom</sub> (6) | <b>h</b> <sub>ef</sub> (7) | t <sub>fix,max</sub> (8) | <b>S</b> min (9) | <b>C</b> <sub>min</sub> (10) |
|-----|----------|--------------|-------------|-----------------------------|---------------------------|-----------------------|-----------------------------|---------------------------|----------------------|----------------------------|--------------------------|------------------|------------------------------|
|     | type     | [mm]         | marking     | [mm]                        | [mm]                      | [Nm]                  | [mm]                        | [mm]                      | [mm]                 | [mm]                       | [mm]                     | [mm]             | [mm]                         |
|     | M6x65 *  | 65           | В           |                             |                           |                       |                             |                           |                      |                            | 15                       |                  |                              |
| 9W  | M6x85 *  | 85           | С           | 6                           | 7                         | 6                     | 100                         | 50                        | 41                   | 35 *                       | 35                       | 50               | 50                           |
| _   | M6x100 * | 100          | D           |                             |                           |                       |                             |                           |                      |                            | 50                       |                  |                              |
|     | M8x65    | 65           | В           |                             |                           |                       |                             |                           |                      |                            | 7                        |                  |                              |
|     | M8x75    | 75           | С           |                             |                           |                       |                             |                           |                      |                            | 15                       |                  |                              |
| 88  | M8x90    | 90           | D           | 8                           | 9                         | 15                    | 100                         | 60                        | 48                   | 40                         | 30                       | 60               | 60                           |
| ≥   | M8x115   | 115          | Е           | 0                           | 9                         | 13                    | 100                         | 00                        | 40                   | 40                         | 55                       | 00               | 00                           |
|     | M8x135   | 135          | F           |                             |                           |                       |                             |                           |                      |                            | 75                       |                  |                              |
|     | M8x165   | 165          | G           |                             |                           |                       |                             |                           |                      |                            | 105                      |                  |                              |
|     | M10x75   | 75           | В           |                             |                           | 2 25                  | 100                         | 70                        | 59                   | 9 50                       | 5                        |                  |                              |
|     | M10x90   | 90           | С           |                             | 12                        |                       |                             |                           |                      |                            | 20                       | 75               |                              |
| M10 | M10x120  | 120          | D           | 10                          |                           |                       |                             |                           |                      |                            | 50                       |                  | 75                           |
|     | M10x145  | 145          | Е           |                             |                           |                       |                             |                           |                      |                            | 75                       |                  |                              |
|     | M10x170  | 170          | F           |                             |                           |                       |                             |                           |                      |                            | 100                      |                  |                              |
|     | M12x100  | 100          | В           |                             |                           | 14 50                 | 120                         | 85                        | 71                   | 60                         | 10                       |                  | 90                           |
| 8   | M12x110  | 110          | С           |                             |                           |                       |                             |                           |                      |                            | 20                       |                  |                              |
| M12 | M12x135  | 135          | D           | 12                          | 14                        |                       |                             |                           |                      |                            | 45                       | 90               |                              |
| _   | M12x160  | 160          | Е           |                             |                           |                       |                             |                           |                      |                            | 70                       |                  |                              |
|     | M12x185  | 185          | F           |                             |                           |                       |                             |                           |                      |                            | 100                      |                  |                              |
|     | M14x100  | 100          | Α           |                             |                           |                       |                             |                           |                      |                            | 3                        |                  |                              |
|     | M14x110  | 110          | В           |                             |                           |                       |                             |                           |                      |                            | 10                       |                  | .                            |
| 41M | M14x130  | 130          | С           | 14                          | 16                        | 70                    | 140                         | 95                        | 80                   | 70                         | 30                       | 105              | 105                          |
| È   | M14x150  | 150          | D           | 14                          | 16                        | 70                    | 140                         | 90                        | 80                   | 70                         | 50                       | 105              | 103                          |
|     | M14x170  | 170          | Е           |                             |                           |                       |                             |                           |                      |                            | 70                       |                  |                              |
|     | M14x200  | 200          | F           |                             |                           |                       |                             |                           |                      |                            | 100                      |                  |                              |
|     | M16x125  | 125          | Α           |                             |                           |                       |                             |                           |                      |                            | 10                       |                  |                              |
| M16 | M16x145  | 145          | В           | 16                          | 18                        | 100                   | 170                         | 115                       | 5 96                 | 85                         | 30                       | 120              | 130                          |
| È   | M16x175  | 175          | С           | 10                          | 10                        | 100                   | 170                         |                           |                      |                            | 60                       | 130              | 130                          |
|     | M16x215  | 215          | D           |                             |                           |                       |                             |                           |                      |                            | 100                      |                  |                              |

<sup>\*</sup> use restricted to anchoring of structural components statically indeterminated.

- (0) Total length of the bolt (mm)
- (1) Nominal diameter of drill bit, d<sub>cut</sub> (mm)
- (2) Diameter of clearance hole in the fixture, d<sub>f</sub> (mm)
- (3) Required torque moment, T<sub>inst</sub> (Nm)
- (4) Minimum thickness of concrete member, h<sub>min</sub> (mm)
- (5) Depth of drilled hole to deepest point,  $h_1$  (mm)
- (6) Minimum installation depth,  $h_{\text{nom}}$  (mm)
- (7) Effective anchorage depth, h<sub>ef</sub> (mm)
- (8) Maximum thickness of the fixture, t<sub>fix,maxi</sub> (mm)
- (9) Minimum spacing (mm)
- (10) Minimum edge distance (mm)

| MFT EKSPANSJONSBOLT ELF              |          |
|--------------------------------------|----------|
| Intended Use Installation parameters | Annex B2 |

Table 4: Characteristic values for tension loads in case of static and quasi static loading for design method A acc. ETAG001, Annex C

|                           |                    |      | M6 *  | M8   | M10  | M12  | M14  | M16  |
|---------------------------|--------------------|------|-------|------|------|------|------|------|
| Steel failure             |                    |      |       |      |      |      |      |      |
| Characteristic resistance | $N_{Rk,s}$         | [kN] | 10,9* | 17,2 | 28,0 | 31,6 | 51,2 | 72,3 |
| Partial safety factor     | γ <sub>Ms</sub> 1) | [-]  | 1,48* | 1,40 | 1,40 | 1,40 | 1,48 | 1,48 |

| Pullout failure $N_{Rk,p} = \Psi_c \times N_{Rk,p}^0$    |        |                    |      |                   |      |    |                   |      |    |
|----------------------------------------------------------|--------|--------------------|------|-------------------|------|----|-------------------|------|----|
| Characteristic resistance in non-cracked concrete C20/25 |        | $N^0_{Rk,p}$       | [kN] | 6*                | 9    | 12 | 20                | 25   | 35 |
| Partial safety factor for non-cracked concrete           |        | γ <sub>Mp</sub> 1) | [-]  | 1,8 <sup>2)</sup> |      |    | 1,5 <sup>3)</sup> |      |    |
|                                                          | C30/37 |                    | [-]  |                   | 1,17 |    | 1,22              |      |    |
| Increasing factor for N <sub>RK</sub> in concrete        | C40/50 | $\Psi_{c}$         | [-]  |                   | 1,32 |    | 1,41              |      |    |
|                                                          | C50/60 |                    | [-]  |                   | 1,42 |    |                   | 1,55 |    |

| Concrete cone fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lure and splittin | g failu                          | re   |      |                   |     |                   |      |     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|------|------|-------------------|-----|-------------------|------|-----|--|
| Effective embedme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt depth          | h <sub>ef</sub>                  | [mm] | 35*  | 40                | 50  | 60                | 70   | 85  |  |
| Partial safety factor for non-cracked cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | $\gamma_{Mc} = 1$ $\gamma_{Msp}$ | [-]  |      | 1,8 <sup>2)</sup> |     | 1,5 <sup>3)</sup> |      |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C30/37            |                                  | [-]  |      | 1,17              |     |                   | 1,22 |     |  |
| Increasing factor for N <sub>RK</sub> in concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C40/50            | $\Psi_{c}$                       | [-]  |      | 1,32              |     |                   | 1,41 |     |  |
| THE STATE OF THE S | C50/60            |                                  | [-]  |      | 1,42              |     | 1,55              |      |     |  |
| Char. spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | concrete cone     | S <sub>cr,N</sub>                | [mm] | 105* | 120               | 150 | 180               | 210  | 255 |  |
| Criar: opaomig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | splitting         | S <sub>cr,sp</sub>               | [mm] | 210* | 240               | 300 | 360               | 420  | 510 |  |
| Char. edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | concrete cone     | C <sub>cr,N</sub>                | [mm] | 53*  | 60                | 75  | 90                | 105  | 130 |  |
| distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | splitting         | C <sub>cr,sp</sub>               | [mm] | 105* | 120               | 150 | 180               | 210  | 255 |  |

<sup>\*</sup> Use restricted to anchoring of structural components statically indeterminated.

| MFT EKSPANSJONSBOLT ELF                                                            |          |
|------------------------------------------------------------------------------------|----------|
| Design according to ETAG001, Annex C Characteristic resistance under tension loads | Annex C1 |

<sup>1)</sup> In absence of other national regulations

<sup>&</sup>lt;sup>2)</sup> The value contains an installation safety factor  $\gamma_2 = 1.2$ 

 $<sup>^{3)}</sup>$  The value contains an installation safety factor  $\gamma_2$  = 1.0

Table 5: Characteristic values for shear loads in case of static and quasi static loading for design method A acc. ETAG001, Annex C

|                                 |                               |      | M6  | M8  | M10  | M12  | M14  | M16  |
|---------------------------------|-------------------------------|------|-----|-----|------|------|------|------|
| Steel failure without lever arm |                               |      |     |     |      |      |      |      |
| Characteristic resistance       | $V_{Rk,s}$                    | [kN] | 6,0 | 9,1 | 14,8 | 18,4 | 32,1 | 42,3 |
| Partial safety factor           | γ <sub>Ms</sub> <sup>1)</sup> | [-]  |     |     | 1,   | 5    |      |      |

| Steel failure with lever arm      |                    |      |    |    |    |    |     |     |  |  |
|-----------------------------------|--------------------|------|----|----|----|----|-----|-----|--|--|
| Characteristic bending resistance | $M^0_{Rk,s}$       | [Nm] | 12 | 24 | 49 | 68 | 121 | 193 |  |  |
| Partial safety factor             | γ <sub>Ms</sub> 1) | [-]  |    |    | 1  | ,5 |     |     |  |  |

| Concrete pry-out failure                                |                    |     |     |                 |  |  |  |  |  |
|---------------------------------------------------------|--------------------|-----|-----|-----------------|--|--|--|--|--|
| Factor in equation (5.6) of ETAG001, Annex C, § 5.2.3.3 | k                  | [-] | 1,0 | 2,0             |  |  |  |  |  |
| Partial safety factor                                   | γ <sub>Mc</sub> 1) | [-] | 1,5 | 5 <sup>2)</sup> |  |  |  |  |  |

| Concrete edge failure                          | Concrete edge failure |      |    |    |     |                 |    |    |  |  |  |
|------------------------------------------------|-----------------------|------|----|----|-----|-----------------|----|----|--|--|--|
| Effective length of anchor under shear loading | l <sub>f</sub>        | [mm] | 25 | 28 | 36  | 43              | 50 | 62 |  |  |  |
| Outside diameter of anchor                     | d <sub>nom</sub>      | [mm] | 6  | 8  | 10  | 12              | 14 | 16 |  |  |  |
| Partial safety factor                          | γ <sub>Mc</sub> 1)    | [-]  |    |    | 1,5 | 5 <sup>2)</sup> |    |    |  |  |  |

<sup>1)</sup> In absence of other national regulations

| MFT EKSPANSJONSBOLT ELF |          |
|-------------------------|----------|
|                         | Annex C2 |

Design according to ETAG001, Annex C

Characteristic resistance under shear loads

 $<sup>^{2)}</sup>$  The value contains an installation safety factor  $\gamma_{\text{2}}$  = 1.0

Table 6: Characteristic values for tension loads in case of static and quasi static loading for design method A acc. CEN/TS 1992-4

|                           |                    |      | M6 *  | M8   | M10  | M12  | M14  | M16  |
|---------------------------|--------------------|------|-------|------|------|------|------|------|
| Steel failure             |                    |      |       |      |      |      |      |      |
| Characteristic resistance | $N_{Rk,s}$         | [kN] | 10,9* | 17,2 | 28,0 | 31,6 | 51,2 | 72,3 |
| Partial safety factor     | γ <sub>Ms</sub> 1) | [-]  | 1,48* | 1,40 | 1,40 | 1,40 | 1,48 | 1,48 |

| Pullout failure $N_{Rk,p} = \Psi_c$                      | $x N^0_{Rk,p}$ |                    |                                                         |      |      |                   |      |    |    |  |
|----------------------------------------------------------|----------------|--------------------|---------------------------------------------------------|------|------|-------------------|------|----|----|--|
| Characteristic resistance in non-cracked concrete C20/25 |                | $N^0_{Rk,p}$       | [kN]                                                    | 6*   | 9    | 12                | 20   | 25 | 35 |  |
| Partial safety factor for non-cracked concrete           |                | γ <sub>Mp</sub> 1) | γ <sub>Mp</sub> <sup>1)</sup> [-] 1,8 <sup>2)</sup> 1,5 |      |      | 1,5 <sup>3)</sup> |      |    |    |  |
|                                                          | C30/37 [-]     |                    |                                                         | 1,17 |      | 1,22              |      |    |    |  |
| Increasing factor for N <sub>RK</sub> in concrete C40/50 |                | $\Psi_{c}$         | [-]                                                     |      | 1,32 |                   | ,32  |    |    |  |
| TXX                                                      | C50/60         |                    | [-]                                                     |      | 1,42 |                   | 1,55 |    |    |  |

| Concrete cone fail                                | ure and splittin | g failu                      | re   | <del></del> | <u> </u>          |     |      | -                 | <u>-</u> |  |  |
|---------------------------------------------------|------------------|------------------------------|------|-------------|-------------------|-----|------|-------------------|----------|--|--|
| Effective embedme                                 | nt depth         | h <sub>ef</sub>              | [mm] | 35*         | 40                | 50  | 60   | 70                | 85       |  |  |
| Factor for non crack                              | ked concrete     | k <sub>ucr</sub>             | [-]  |             |                   | 10  | 10,1 |                   |          |  |  |
| Partial safety factor for non-cracked cor         |                  | $\gamma_{Mc} = \gamma_{Msp}$ | [-]  |             | 1,8 <sup>2)</sup> |     |      | 1,5 <sup>3)</sup> |          |  |  |
|                                                   | C30/37           |                              | [-]  |             | 1,17              |     | 1,22 |                   |          |  |  |
| Increasing factor for N <sub>RK</sub> in concrete | C40/50           | $\Psi_{\text{c}}$            | [-]  |             | 1,32              |     | 1,41 |                   |          |  |  |
| TO THE IT                                         | C50/60           |                              | [-]  |             | 1,42              |     | 1,55 |                   |          |  |  |
| Char. spacing                                     | concrete cone    | S <sub>cr,N</sub>            | [mm] | 105*        | 120               | 150 | 180  | 210               | 255      |  |  |
| Orian. Spacing                                    | splitting        | S <sub>cr,sp</sub>           | [mm] | 210*        | 240               | 300 | 360  | 420               | 510      |  |  |
| Char. edge                                        | concrete cone    | C <sub>cr,N</sub>            | [mm] | 53*         | 60                | 75  | 90   | 105               | 130      |  |  |
| distance                                          | splitting        | C <sub>cr,sp</sub>           | [mm] | 105*        | 120               | 150 | 180  | 210               | 255      |  |  |

<sup>\*</sup> Use restricted to anchoring of structural components statically indeterminated.

# MFT EKSPANSJONSBOLT ELF Annex C3 Design according to CEN/TS 1992-4 Characteristic resistance under tension loads

<sup>1)</sup> In absence of other national regulations

<sup>&</sup>lt;sup>2)</sup> The value contains an installation safety factor  $\gamma_2 = 1.2$ 

<sup>&</sup>lt;sup>3)</sup> The value contains an installation safety factor  $\gamma_2 = 1.0$ 

Table 7: Characteristic values for shear loads in case of static and quasi static loading for design method A acc. CEN/TS 1992-4

|                                 |                    |      | М6  | M8  | M10  | M12  | M14  | M16  |  |
|---------------------------------|--------------------|------|-----|-----|------|------|------|------|--|
| Steel failure without lever arm |                    |      |     |     |      |      |      |      |  |
| Characteristic resistance       | $V_{Rk,s}$         | [kN] | 6,0 | 9,1 | 14,8 | 18,4 | 32,1 | 42,3 |  |
| Factor considering ductility    | k <sub>2</sub>     | [-]  | 0,8 |     |      |      |      |      |  |
| Partial safety factor           | γ <sub>Ms</sub> 1) | [-]  | 1,5 |     |      |      |      |      |  |

| Steel failure with lever arm      |                               |      |    |    |    |    |     |     |  |
|-----------------------------------|-------------------------------|------|----|----|----|----|-----|-----|--|
| Characteristic bending resistance | $M^0_{Rk,s}$                  | [Nm] | 12 | 24 | 49 | 68 | 121 | 193 |  |
| Partial safety factor             | γ <sub>Ms</sub> <sup>1)</sup> | [-]  |    |    | 1  | ,5 |     |     |  |

| Concrete pry-out failure                              |                               |     |                   |     |  |  |  |
|-------------------------------------------------------|-------------------------------|-----|-------------------|-----|--|--|--|
| Factor in equation (16) of CEN TS 1992-4-4, § 6.2.2.3 | <b>k</b> <sub>3</sub>         | [-] | 1,0               | 2,0 |  |  |  |
| Partial safety factor                                 | γ <sub>Mc</sub> <sup>1)</sup> | [-] | 1,5 <sup>2)</sup> |     |  |  |  |

| Concrete edge failure                          |                               |      |                   |    |    |    |    |    |
|------------------------------------------------|-------------------------------|------|-------------------|----|----|----|----|----|
| Effective length of anchor under shear loading | <b>I</b> <sub>f</sub>         | [mm] | 25                | 28 | 36 | 43 | 50 | 62 |
| Outside diameter of anchor                     | d <sub>nom</sub>              | [mm] | 6                 | 8  | 10 | 12 | 14 | 16 |
| Partial safety factor                          | γ <sub>Mc</sub> <sup>1)</sup> | [-]  | 1,5 <sup>2)</sup> |    |    |    |    |    |

<sup>1)</sup> In absence of other national regulations

# MFT EKSPANSJONSBOLT ELF

Design according to CEN/TS 1992-4

Characteristic resistance under shear loads

**Annex C4** 

<sup>&</sup>lt;sup>2)</sup> The value contains an installation safety factor  $\gamma_2 = 1.0$ 

Table 8: Displacements under tension loading

|                                                          |                  |      | M6  | M8  | M10 | M12 | M14  | M16  |
|----------------------------------------------------------|------------------|------|-----|-----|-----|-----|------|------|
| Tension load in non-cracked concrete C20/25 to C50/60 [k |                  | [kN] | 2,4 | 3,6 | 4,8 | 9,5 | 11,9 | 16,7 |
| Displacement                                             | $\delta_{V0}$    | [mm] | 0,1 | 0,1 | 0,1 | 0,1 | 0,1  | 0,1  |
|                                                          | δ <sub>V</sub> ∞ | [mm] | 1,6 | 1,6 | 1,6 | 1,6 | 1,6  | 1,6  |

Table 9: Displacements under shear loading

|                                                          |                       |      | M6            | M8            | M10           | M12           | M14           | M16           |
|----------------------------------------------------------|-----------------------|------|---------------|---------------|---------------|---------------|---------------|---------------|
| Shear load in non-cracked concrete C20/25 to C50/60 [kN] |                       | [kN] | 2,9           | 4,3           | 7,0           | 8,8           | 15,3          | 20,1          |
| Displacement                                             | $\delta_{V0}$         | [mm] | 0,8<br>(+0,7) | 0,8<br>(+0,7) | 0,9<br>(+1,2) | 1,0<br>(+1,2) | 1,2<br>(+1,2) | 1,2<br>(+1,2) |
|                                                          | $\delta_{V^{\infty}}$ | [mm] | 1,2<br>(+0,7) | 1,3<br>(+0,7) | 1,4<br>(+1,2) | 1,5<br>(+1,2) | 1,8<br>(+1,2) | 1,8<br>(+1,2) |

<sup>\*</sup> Displacement : the table shows the deformation to be expected from the anchor itself, whilst the bracket value indicates the movement between the anchor body and the hole drilled in the concrete member or the hole in the fixture.

Additional displacement due to annular gap between anchor and fixture is to be taken into account.

| MFT EKSPANSJONSBOLT ELF     | A 05     |
|-----------------------------|----------|
| <b>Design</b> Displacements | Annex C5 |