

Centre Scientifique et

Technique du Bâtiment 84 avenue Jean Jaurès

84 avenue Jean Jaurès CHAMPS-SUR-MARNE F-77447 Marne-la-Vallée Cedex 2 Tél. : (33) 01 64 68 82 82 Fax : (33) 01 60 05 70 37

European Technical Assessment

ETA-14/0069 of 05/06/2020

English translation prepared by CSTB - Original version in French language

General Part	
Nom commercial <i>Trade name</i>	Hilti HMU-P and HMU-PF
Famille de produit Product family	Cheville métallique à verrouillage de forme, en acier au carbone, pour fixation en béton fissuré et non fissuré : diamètres M10, M12 et M16
	Undercut fastener, made of carbon steel for use in cracked and uncracked concrete: sizes M10, M12 and M16
Titulaire <i>Manufacturer</i>	Hilti Corporation Feldkircherstrasse 100 FL-9494 Schaan Principality of Liechtenstein
Usine de fabrication Manufacturing plants	Hilti plants
Cette evaluation contient This Assessment contains	16 pages incluant 14 annexes qui font partie intégrante de cette évaluation 16 pages including 14 annexes which form an integral part of this assessment
Base de l'ETE Basis of ETA	EAD 330232-01-0601
Cette evaluation remplace: This Assessment replaces	ETE-14/0069 valide à compter du 24/12/2015 ETA-14/0069 with validity dated from 24/12/2015

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific Part

1 Technical description of the product

The HILTI HMU-PF undercut fastener in the size of M10, M12 and M16 is a fastener made of carbon steel with hot dip galvanized coating, and the HILTI HMU-P undercut fastener in the size of M10 and M12 is a fastener made of carbon steel with zinc-plated coating. They are placed into a hole drilled with a special stop drill bit and self-cutting undercut with a special setting tool. The nut is torque tightened to complete the fastening of the fixture.

The illustration and the description of the product are given in Annexes A.

2 Specification of the intended use

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annexes B.

The provisions made in this European technical assessment are based on an assumed working life of the fastener of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic tension resistance	See Annex C1
Characteristic shear resistance	See Annex C2
Displacements	See Annex C3
Characteristic resistance under seismic action C1	See Annex C4
Characteristic resistance under seismic action C2	See Annex C5

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Fasteners satisfy requirements for Class A1
Characteristic tension resistance under fire	See Annex C7
Characteristic shear resistance under fire	See Annex C8

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances contained in this European technical assessment, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

For basic requirement safety in use the same criteria are valid as for basic requirement mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not relevant.

3.6 Energy economy and heat retention (BWR 6)

Not relevant.

3.7 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was determined for this product.

3.8 General aspects relating to fitness for use

Durability and Serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

4 Assessment and verification of constancy of performance (AVCP)

According to the Decision 96/582/EC of the European Commission¹, as amended, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or Class	System
Metal fasteners for use in concrete	For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the works) or heavy units	_	1

5 Technical details necessary for the implementation of the AVCP system

Technical details necessary for the implementation of the Assessment and verification of constancy of performance (AVCP) system are laid down in the control plan deposited at Centre Scientifique et Technique du Bâtiment.

The manufacturer shall, on the basis of a contract, involve a notified body approved in the field of fasteners for issuing the certificate of conformity CE based on the control plan.

Issued in Marne La Vallée on 05-06-2020 by Head of the Structure, Masonry and Partition Division The Company and Partition Division Division The Company and Partition Division Divis

The original French version is signed

Anca Cronopol

Official Journal of the European Communities L 254 of 08.10.1996

Table A1:	Required stop drill bits and setting tools for HMU-P/PF	
-----------	---	--

Fastener	Stop o	irill bit	Setting tool		
	TE-C	TE-Y	TE-C	TE-Y	
	connection end	connection end	connection end	connection end	
HMU-P/PF M10x60	TE-C HMU-B M10X60	-	TE-C-HMU-ST- M10	-	
HMU-P/PF M12x80	TE-C-HMU-B M12x80	-	TE-C-HMU-ST- M12	-	
HMU-PF M16x100	TE-C-HMU-B M16x100	TE-Y-HMU-B M16x100	TE-C-HMU-ST- M16	TE-Y-HMU-ST- M16	
HMU-PF M16x125	TE-C-HMU-B M16x125	TE-Y-HMU-B M16x125	TE-C-HMU-ST- M16	TE-Y-HMU-ST- M16	

Table A2: Materials

Designation	Material
HMU-P	
Threaded bolt with cone	Cold formed heat treated steel, elongation at failure \geq 12%, necking at failure \geq 52%, wax coated (after zinc plating), electroplated zinc coated \geq 5 µm
Sleeve	Steel tube, electroplated zinc coated \geq 5 µm
Washer	Acc. to DIN 125-1 140 HV March 1990, electroplated zinc coated \ge 5 µm
Nut	Hexagon nut acc. to DIN 934, electroplated zinc coated \ge 5 µm
HMU-PF	
Threaded bolt with cone	Cold formed heat treated steel, elongation at failure \ge 12%, necking at failure \ge 52%, wax coated (after hot dip galvanization), hot dip galvanized \ge 50µm
Sleeve	Steel tube, hot dip galvanized ≥ 50 µm
Washer	Acc. to DIN 125-1 140 HV March 1990, hot dip galvanized ≥ 50 μm
Nut	Hexagon nut acc. to DIN 934, hot dip galvanized \geq 50 µm

HMU Undercut Fastener

Product description Required stop drill bits and setting tools Materials

Annex A2

Specifications of intended use

Fasteners subject to:

- Static or quasi-static loads.
- Seismic actions for Performance Category C1 and C2.
- Fire exposure.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013+ A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

• Structures subject to dry indoor conditions, indoor with temporary condensation

Design:

- The fasteners are designed in accordance with EN 1992-4 "Design of concrete structures Part4: Design of fastenings for use in concrete" under the responsibility of an engineer experienced in fasteners and concrete work.
- For seismic application the fasteners are designed in accordance with EN 1992-4, Annex C "Design of fastenings under seismic actions".
- For application with resistance under fire exposure the fasteners are designed in accordance with EN 1992-4, Annex D "Exposure to fire – design method".
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings.

Installation:

- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the fastener only as supplied by the manufacturer without exchanging the components of a fastener.
- Fastener installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools.
- Effective anchorage depth, edge distances and spacing not less than the specified values without minus tolerances.
- In case of aborted hole, drilling of new hole at a minimum distance of twice the depth of the aborted hole, or smaller distance provided the aborted drill hole is filled with high strength mortar and no shear or oblique tension loads in the direction of aborted hole.

HMU Undercut Fastener

Intended use Specifications Annex B1

Table B1: Specifications of intended use

Fasteners subject to:	HMU-P	HMU-PF
Static and quasi static loading in cracked and uncracked concrete	M10-M16	M10-M16
Seismic performance category C1	M10-M16	M10-M16
Seismic performance category C2	-	M10-M16 ¹⁾
Fire exposure	M10-M16	M10-M16

¹⁾ HMU-PF M16x125 only.

Table B2: Fastener dimensions

НМО			M10	M12	M16	M16
Length of the fastener	L	[mm]	109,5-139,5	133-176	167-197	222-239
Expansion sleeve length	$l_{\rm sleeve}$	[mm]	61	80,6	100	125
Height of nut	$h_{ m nut}$	[mm]	8,94	11,5	15	5,0

Table B3: Installation parameters

НМО			M10	M12	M16	M16
Effective embedment depth	$h_{ m ef}$	[mm]	60	80	100	125
Nominal diameter of drill bit	d_0	[mm]	15	18	23	23
Max. cutting diameter of drill bit 2)	$d_{\rm cut}$	[mm]	15,5	18,5	23,0	23,0
Max. diameter of clearance hole in the fixture	$d_{ m f}$	[mm]	12	14	18	18
Fixture thickness	t_{fix}	[mm]	2 ¹⁾ - 50	2 ¹⁾ - 65	0 ¹⁾ - 60	0 ¹⁾ - 75
Min. depth of drill hole	h_1	[mm]	69	92	115	140
Min. thickness of concrete member	h_{\min}	[mm]	120	160	200	250
Torque wrench width	SW	[mm]	17	19	24	24
Installation torque	T _{inst}	[Nm]	30	45	120	120
Minimum oppoing	s _{min}	[mm]	60	90	100	100
Minimum spacing	$c \ge$	[mm]	55	90	100	100
Minimum edge distance	c_{\min}	[mm]	55	90	100	100
	$s \ge$	[mm]	60	90	100	100

¹⁾ When thickness of attachment is less than 3mm, big washer acc. to DIN1052 standard needs to be used.

²⁾ Use special stop drill bit TE-C-HMU-B and TE-Y-HMU-B only

HMU Undercut Fastener

Intended use

Specifications of intended use and fastener dimensions Installation parameters

Annex B2

Table C1: Characteristic resistance under tension load in case of static and quasistatic loading

Size			HMU-P/PF M10	HMU-P/PF M12	HMU-PF M16	HMU-PF M16		
Effective embedment depth	$h_{ m ef}$	[mm]	60	80	100	125		
Steel failure								
Partial safety factor	$\gamma_{\rm Ms}{}^{1)}$	[-]		1	,5			
Characteristic resistance	$N_{ m Rk,s}$	[kN]	46,4	67,4	12	5,6		
Pullout failure								
Characteristic resistance in conc	rete C20/25							
Installation safety factor	γ_{inst}	[-]		1,	,0			
Uncracked concrete	N _{Rk,p,ucr}	[kN]	24	40	50	70		
Cracked concrete	N _{Rk,p,cr}	[kN]	17	30	38	50		
Increasing factor	C30/37	[-]	1,22					
concrete strength	C40/50	[-]		1,4	41			
Ψc	C50/60	[-]		1,58				
Concrete cone and splitting fa	ilure							
Installation safety factor	$\gamma_{ m inst}$	[-]		1,	,0			
Factor for cracked concrete	k _{ucr,N}	[-]		11	,0			
Factor for uncracked concrete	k _{cr,N}	[-]		7	,7			
Spacing	S _{cr,N}	[mm]	180	240	300	375		
Edge distance	C _{cr,N}	[mm]	90	120	150	188		
Spacing (splitting)	S _{cr,sp}	[mm]	230	300	300	375		
Edge distance (splitting)	C _{cr,sp}	[mm]	115	150	160	200		

1) In absence of other national regulations

HMU Undercut Fastener

Performances

Characteristic resistance under tension load

Table C2: Characteristic resistance under shear load in case of static and quasistatic loading

Size			HMU-P/PF M10	HMU-P/PF M12	HMU-PF M16	HMU-PF M16
Effective embedment depth	$h_{ m ef}$	[mm]	60	80	100	125
Steel failure without lever arm						
Partial safety factor	$\gamma_{\rm Ms}{}^{1)}$	[-]		1,:	25	
Ductility factor	<i>k</i> ₇	[-]		0	,8	
Characteristic resistance	V _{Rk,s}	[kN]	23,2	33,7	62	2,8
Steel failure with lever arm						
Partial safety factor	$\gamma_{\rm Ms}{}^{1)}$	[-]	1,25			
Ductility factor	<i>k</i> ₇	[-]		0	,8	
Characteristic resistance	$M_{\rm Rk,s}^0$	[Nm]	59,8	104,6	26	6,8
Concrete pryout failure						
Pry-out factor	<i>k</i> ₈	[-]		2	,0	
Installation safety factor	$\gamma_{\rm inst}$	[-]		1	,0	
Concrete edge failure						
Effective length of fastener under shear loading	$l_{\rm f} = h_{\rm ef}$	[mm]	60	80	100	125
Outside diameter of fastener	$d_{\rm nom}$	[mm]	14,50 17,50 21,60			
Installation safety factor	$\gamma_{ m inst}$	[-]	1,0			

1) In absence of other national regulations

HMU Undercut Fastener

Performances

Characteristic resistance under shear load

loading						
Size			HMU-P/PF M10	HMU-P/PF M12	HMU-PF M16	HMU-PF M16
Effective embedment depth	$h_{ m ef}$	[mm]	60	80	100	125
Tension load in uncracked concrete C20/25	Ν	[kN]	10,89	16,76	23,43	32,74
Displacement	$\delta_{ m N0}$	[mm]	0,10	0,49	0,14	0,29
Displacement	$\delta_{\mathrm{N}\infty}$	[mm]	1,36	1,79	1,57	1,57
Tension load in uncracked concrete C50/60	Ν	[kN]	17,21	26,50	37,04	51,76
	$\delta_{ m N0}$	[mm]	0,09	1,67	0,74	1,16
Displacement	$\delta_{\mathrm{N}\infty}$	[mm]	1,36	1,79	1,57	1,57
Tension load in cracked concrete C20/25	Ν	[kN]	7,62	11,73	16,40	22,92
Diaplacement	$\delta_{ m N0}$	[mm]	0,44	0,88	0,34	0,65
Displacement	$\delta_{\mathrm{N}\infty}$	[mm]	1,36	1,79	1,57	1,57
Tension load in cracked concrete C50/60	N	[kN]	12,05	18,55	25,93	36,23
Disalssessest	$\delta_{ m N0}$	[mm]	0,85	0,98	0,26	0,62
Displacement	$\delta_{\mathrm{N}\infty}$	[mm]	1,36	1,79	1,57	1,57

Table C3: Displacements under tension load in case of static and quasi-static loading

Table C4: Displacements under shear load in case of static and quasi-static loading

Size			HMU-P/PF M10	HMU-P/PF M12	HMU-PF M16	HMU-PF M16
Effective embedment depth	$h_{ m ef}$	[mm]	60	80	100	125
Tension load in cracked and uncracked concrete C20/25 to C50/60	V	[kN]	12,37	19,27	37	,83
Displacement	$\delta_{ m V0}$	[mm]	3,19	1,95	3,84	
Displacement	$\delta_{\mathrm{V}\infty}$	[mm]	4,78	2,93	5,	75

¹⁾ Additional displacement due to anular gap between fastener and fixture is to be taken into account.

HMU Undercut Fastener

Performances

Displacements under static or quasi static loading

Table C5: Characteristic resistance under tension load in case of seismic categoryC1

Size			HMU-P/PF M10	HMU-P/PF M12	HMU-PF M16	HMU-PF M16
Effective embedment depth	$h_{ m ef}$	[mm]	60	80	100	125
Steel failure						
Partial safety factor	$\gamma_{Ms,C1}$ 1)	[-]	1,5			
Characteristic resistance	N _{Rk,s,C1}	[kN]	46,4 67,4 125,6			5,6
Pullout failure						
Installation safety factor	Yinst	[-]	1,0			
Characteristic resistance	$N_{\rm Rk,p,C1}$	[kN]	17,0	30,0	38,0	50,0
Concrete cone failure						
Installation safety factor	Yinst	[-]	1,0			

¹⁾ In absence of other national regulations

Table C6: Characteristic resistance under shear load in case of seismic categoryC1

Size			HMU-P/PF M10	HMU-P/PF M12	HMU-PF M16	HMU-PF M16
Effective embedment depth	$h_{ m ef}$	[mm]	60	80	100	125
Steel failure without lever arm						
Partial safety factor	$\gamma_{Ms,C1}$ ¹⁾	[-]	1,25			
Characteristic resistance	$V_{\rm Rk,s,C1}$	[kN]	20,9 33,7 62,8			
Concrete pryout failure						
Installation safety factor	$\gamma_{\rm inst}$	[-]	1,0			
Concrete edge failure						
Installation safety factor	$\gamma_{\rm inst}$	[-]		1,	,0	

¹⁾ In absence of other national regulations

HMU Undercut Fastener

Performances

Characteristic resistance under seismic action category C1

Table C7: Characteristic resistance under tension load in case of seismic category C2

Size			HMU- PF M10	HMU- PF M12	HMU-PF M16
Effective embedment depth	$h_{ m ef}$	[mm]	60	80	125
Steel failure					
Partial safety factor	$\gamma_{\rm Ms,C2}{}^{1)}$	[-]		1,5	
Characteristic resistance	N _{Rk,s,C2}	[kN]	46,4	67,4	125,6
Pullout failure					
Installation safety factor	$\gamma_{ m inst}$	[-]		1,0	
Characteristic resistance	$N_{\rm Rk,p,C2}$	[kN]	17,0	28,0	50,0
Concrete cone failure					
Installation safety factor	$\gamma_{ m inst}$	[-]		1,0	

¹⁾ In absence of other national regulations

Table C8: Characteristic resistance under shear load in case of seismic categoryC2

Size			HMU-PF M10	HMU-PF M12	HMU-PF M16
Effective embedment depth	h _{ef}	[mm]	60	80	125
Steel failure without lever arm					
Partial safety factor	$\gamma_{Ms,C2}$ ¹⁾	[-]		1,25	
Characteristic resistance	V _{Rk,s,C2}	[kN]	18,6	28,7	41,5
Concrete pryout failure					
Installation safety factor	$\gamma_{ m inst}$	[-]		1,0	
Concrete edge failure					
Installation safety factor	$\gamma_{ m inst}$	[-]		1,0	

¹⁾ In absence of other national regulations

HMU Undercut Fastener

Performances

Characteristic resistance under seismic action category C2

Size			HMU-PF M10	HMU-PF M12	HMU-PF M16
Displacement DLS	$\delta_{ m N,C2(DLS)}$	[mm]	3,69	6,48	6,06
Displacement ULS	$\delta_{ m N,C2(ULS)}$	[mm]	13,07	16,24	19,75

Table C10: Displacements under shear load in case of seismic category C2

Size			HMU-PF M10	HMU-PF M12	HMU-PF M16
Displacement DLS	$\delta_{ m V,C2(DLS)}$	[mm]	5,21	3,93	5,11
Displacement ULS	$\delta_{ m V,C2(ULS)}$	[mm]	8,73	6,09	8,74

HMU Undercut Fastener

Performances

Displacements under seismic action category C2

Table C11: Characteristic resistance under	tension load in cracked and uncracked
concrete under fire exposure ¹⁾²⁾	

Size			HMU-P/PF M10	HMU-P/PF M12	HMU-PF M16	HMU-PF M16
Effective embedment depth	$h_{ m ef}$	[mm]	60	80	100	125
Steel failure						
	$N_{\rm Rk,s,fi(30)}$	[kN]	0,87	1,69	3,	14
Characteristic registeres	$N_{\rm Rk,s,fi(60)}$	[kN]	0,75	1,26	2,	36
	$N_{\rm Rk,s,fi(90)}$	[kN]	0,58	1,10	2,	04
	$N_{\mathrm{Rk,s,fi(120)}}$	[kN]	0,46	0,84	1,	57
Pullout failure						
	$N_{\rm Rk,p,fi(30)}$	[kN]	4,25	7,50	9,50	12,50
Characteristic resistance	$N_{\rm Rk,p,fi(60)}$	[kN]	4,25	7,50	9,50	12,50
≥ C20/25	$N_{\rm Rk,p,fi(90)}$	[kN]	4,25	7,50	9,50	12,50
	$N_{\rm Rk,p,fi(120)}$	[kN]	3,40	6,00	7,60	10,00
Concrete cone failure and sp	litting failure ³⁾					
	$N_{\rm Rk,c,fi(30)}^0$	[kN]	4,80	9,86	17,22	30,08
Characteristic resistance	$N_{\rm Rk,c,fi(60)}^0$	[kN]	4,80	9,86	17,22	30,08
≥ C20/25	$N_{\rm Rk,c,fi(90)}^0$	[kN]	4,80	9,86	17,22	30,08
	$N_{ m Rk,c,fi(120)}^0$	[kN]	3,84	7,88	13,77	24,06
Characteristic Spacing	S _{cr,N,fi}	[mm]	240	320	400	500
Characteristic Edge distance	C _{cr,N,fi}	[mm]	120	160	200	250

¹⁾ Design under fire exposure is performed according to the design method given in EN 1992-4. Under fire exposure usually cracked concrete is assumed. The design equations are given in EN 1992-4, Annex D.

²⁾ EN 1992-4 covers design for fire exposure from one side. For fire attack from more than one side the edge distance must be increased to $c_{\min} \ge 300 \text{ mm and} \ge 2 \cdot h_{ef}$.

³⁾ As a rule, splitting failure can be neglected when cracked concrete and reinforcement is assumed.

⁴⁾ In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi}$ = 1,0 is recommended.

HMU Undercut Fastener

Performances

Characteristic resistance of tension load resistance under fire resistance

Table C12: Characteristic resistance under shear	^r load in cracked and uncracked
concrete under fire exposure ¹⁾²⁾	

Size			HMU-P/PF M10	HMU-P/PF M12	HMU-PF M16	HMU-PF M16
Effective embedment depth	$h_{ m ef}$	[mm]	60	80	100	125
Steel failure without lever arm						
Characteristic resistance	$V_{\rm Rk,s,fi(30)}$	[kN]	0,87	1,69	3,14	
	$V_{\rm Rk,s,fi(60)}$	[kN]	0,75	1,26	2,36	
	$V_{\rm Rk,s,fi(90)}$	[kN]	0,58	1,10	2,04	
	$V_{\rm Rk,s,fi(120)}$	[kN]	0,46	0,84	1,57	
Steel failure with lever arm						
Characteristic resistance	M^0 Rk,s,fi(30)	[Nm]	1,12	2,62	6,67	
	M^0 Rk,s,fi(60)	[Nm]	0,97	1,96	5,00	
	$M^0_{Rk,s,fi(90)}$	[Nm]	0,75	1,70	4,34	
	M ⁰ Rk,s,fi(120)	[Nm]	0,60	1,31	3,34	
Concrete pryout failure						
Pryout factor	k_8	[-]		2,0		
Characteristic resistance ≥ C20/25	$V_{\rm Rk,cp,fi(30)}$	[kN]	9,60	19,71	34,44	60,16
	$V_{\rm Rk,cp,fi(60)}$	[kN]	9,60	19,71	34,44	60,16
	$V_{\rm Rk,cp,fi(90)}$	[kN]	9,60	19,71	34,44	60,16
	$V_{\rm Rk,cp,fi(120)}$	[kN]	7,68	15,77	27,55	48,13
Concrete edge failure						
Effective length of fastener under shear loading	$l_{\rm f} = h_{\rm ef}$	[mm]	60	80	100	125
Outside diameter of fastener	$d_{\rm nom}$	[mm]	14,50	17,50	21,60	

¹⁾ Design under fire exposure is performed according to the design method given in EN 1992-4. Under fire exposure usually cracked concrete is assumed. The design equations are given in EN 1992-4, Annex D.

²⁾ EN 1992-4 covers design for fire exposure from one side. For fire attack from more than one side the edge distance must be increased to $c_{\min} \ge 300$ mm and $\ge 2 \cdot h_{ef}$.

HMU Undercut Fastener

Performances

Characteristic resistance of shear load resistance under fire resistance