

Centre Scientifique et Technique du Bâtiment

84 avenue Jean Jaurès CHAMPS-SUR-MARNE F-77447 Marne-la-Vallée Cedex 2

Tél.: (33) 01 64 68 82 82 Fax: (33) 01 60 05 70 37

European Technical Assessment

ETA-23/0084 of 31/03/2023

English translation prepared by CSTB - Original version in French language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Centre Scientifique et Technique du Batiment (CSTB)

Trade name of the construction product:

FIXDEX

Product family to which the construction product belongs:

Torque-controlled expansion anchor, made of galvanised steel, for use in concrete: sizes M10, M12 and M16.

Manufacturer:

Hebei Goodfix Industrial co., Itd Mid of Guangfu Road Youngnian County Handan City, Heibei Province, China

Manufacturing plant:

Hebei Goodfix Plant

This European Technical Assessment contains:

13 pages including 10 pages of annexes which form an integral part of this assessment

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of: EAD 330232-01-0601 "Mechanical fasteners for use in concrete"

This version replaces:

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific Part

1.1 Technical description of the product

The FIXDEX anchor is a torque-controlled expansion anchor made of galvanised steel which is placed into a drilled hole and anchored by torque controlled expansion.

The product description is given in Annexes A.

1.2 Specification of the intended use

Information on the intended use and the requirements for the performance assessment are given in Annex B.

The verifications and assessment methods on which the European Technical Assessment is based lead to the assumption of a working life of the product of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

Performance of the product

1.3 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance	
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C1	
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C2	
Displacements	See Annex C3	
Characteristic resistance and displacements for seismic performance categories C1	No performance determined	
Characteristic resistance and displacements for seismic performance categories C2	No performance determined	

1.4 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Anchorages satisfy requirements for Class A1		
Resistance to fire	No performance determined		

1.5 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances contained in this European technical approval, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

1.6 Safety in use (BWR 4)

For Basic requirement Safety in use the same criteria are valid as for Basic Requirement Mechanical resistance and stability.

1.7 Protection against noise (BWR 5)

Not relevant.

1.8 Energy economy and heat retention (BWR 6)

Not relevant.

1.9 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was determined for this product.

1.10 General aspects relating to fitness for use

Durability and Serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

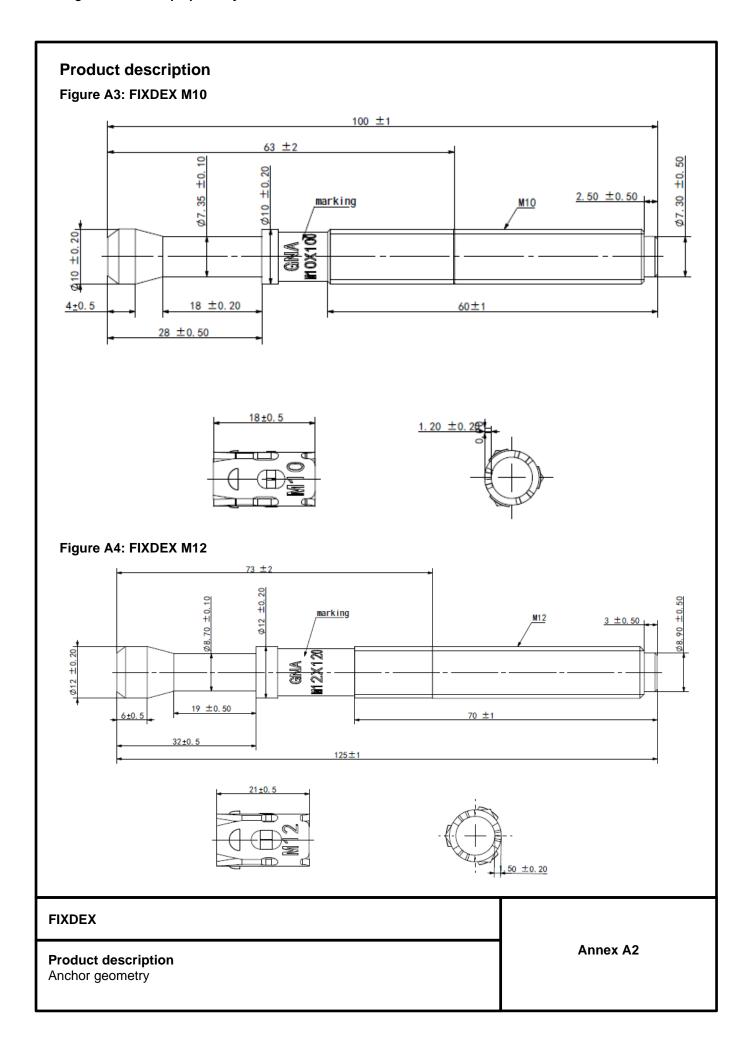
Assessment and verification of constancy of performance (AVCP)

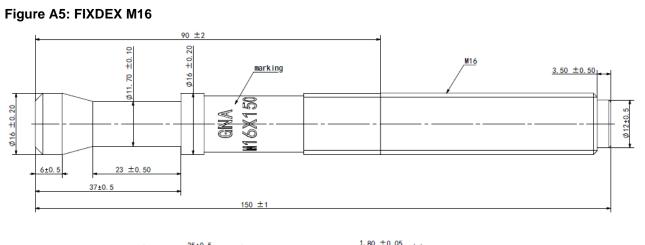
According to the Decision 96/582/EC of the European Commission¹, as amended, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

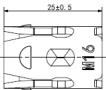
Product	Intended use	Level or Class	System
Metal anchors for use in concrete	For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the works) or heavy units		1

Technical details necessary for the implementation of the AVCP system

The technical details necessary for the implementation of the system for the assessment and verification of constancy of performance are laid down in the control plan (confidential part of this European Technical Assessment) deposited at Centre Scientifique et Technique du Bâtiment (CSTB).


The manufacturer shall, on the basis of a contract, involve a notified body approved in the field of supporting systems for issuing the certificate of conformity CE based on the control plan.


Issued in Marne La Vallée on 31/03/2023 by


The original French version is signed


La cheffe de division, Anca CRONOPOL

Installed condition Figure A1: Anchor after installation **Į**fīx h_{ef} h_{nom} h_1 **Product description** Figure A2: Torque controlled expansion anchor FIXDEX Washer Marking Clip piece <u>Bolt</u> Hexagon Nut **Embedment Depth** Marker line **FIXDEX Annex A1 Product description** Installed condition and product description

Table A1: Fastener dimensions

Footoney size		FIXDEX				
Fastener size			M10	M12	M16	
Width across hexagon nut	SW	[mm]	17	19	24	
Lenght of fastener	L	[mm]	70-150	80-200	90-250	

FIXDEX	
Product description Anchor geometry	Annex A3

Table A2: Materials

Designation	Material
Anchor body	Carbon steel, $f_{uk} \ge 760 N/mm^2$, $f_{yk} \ge 448 N/mm$
	electroplated zinc coated ≥ 5µm, elongation at failure A ₅ ≤ 8%
Hexagonal nut	Carbon steel, electroplated zinc coated ≥ 5µm
Washer	Carbon steel, electroplated zinc coated ≥ 5µm
Expansion sleeve	Carbon steel, electroplated zinc coated ≥ 5µm
Distance sleeve	Carbon steel, electroplated zinc coated ≥ 5µm

FIXDEX	
Product description Materials	Annex A4

Specifications of intended use

Anchorages subject to:

Static and quasi-static loading: all sizes.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013+ A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016.
- · Uncracked concrete.

Use conditions (Environmental conditions):

• FIXDEX anchors made of electroplated carbon steel: Structures subject to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings (e.g. position of the anchor reloative to reinforcement or to supports etc.).
- Anchorages under static or quasi-static loading are designed in accordance with EN 1992-4
- Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The anchor may only be set once.
- Drilling technique: Hammer Drilling
- · Cleaning the hole of drilling dust.
- In case of aborted hole, drilling of new hole at a minimum distance of twice the depth of the aborted hole, or smaller distance provided the aborted drill hole is filled with high strength mortar and no shear or oblique tension loads in the direction of aborted hole.

FIXDEX	
Intended use Specifications	Annex B1

Table B1: Installation parameters FIXDEX

FIXDEX			M10	M12	M16	
Nominal diameter of drill bit	d ₀	[mm]	10	12	16	
Max. diameter of clearance hole in the fixture	df	[mm]	12	14	18	
Fixture thickness	t _{fix}	[mm]	0-50	0-90	0-120	
Effective anchorage depth	hef	[mm]	55	63	80	
Min. depth of drill hole	h ₁	[mm]	70	80	100	
Min. thickness of concrete member	h _{min}	[mm]	120	160	175	
Installation torque	Tinst	[Nm]	40	60	120	
Uncracked concrete						
Minimum adda distance and appains	Smin	[mm]	70	200	200	
Minimum edge distance and spacing		[mm]	80	160	160	

FIXDEX	
Intended use Installation parameters	Annex B2

Installation instruction 1. Hammer drilling $2\times$ 2. Blow borehole until no dust comes out 3. Set anchor in the borehole using a hammer 4. Tighten the anchor to he required installation torque 5、Check installation

FIXDEX	
Intended use Installation instructions	Annex B3

Table C1: Characteristic values of resistance under tension load in case of static and quasistatic loading

Size			M10	M12	M16	
Effective anchorage depth	h _{ef}	[mm]	55	63	80	
Steel failure						
Partial safety factor	γMs,N	[-]		2,0		
Characteristic resistance	$N_{Rk,s}$	[kN]	32,2	45,2	81,7	
Pullout failure						
Characteristic resistance in concrete C2	0/25					
Installation safety factor	γinst	[-]	1,2	1,0	1,2	
Uncracked concrete	N _{Rk,p,uncr}	[kN]	20	23	42	
Characteristic resistance in concrete C2	0/25					
Increasing factor concrete strength ψ_{c}	C30/37	[-]	1,13	1,18	1,22	
	C40/50	[-]	1,23	1,32	1,41	
	C50/60	[-]	1,32	1,44	1,58	
Concrete cone and splitting failure						
Installation safety factor	γinst	[-]	1,2	1,0	1,2	
Factor	k _{ucr,N}	[-]	11,0			
Characteristic resistance	$N^0_{Rk,sp}$	[kN]		$min(N^0_{Rk,c}; N_{Rk,p})$		
Spacing	Scr,N	[mm]	3 · h _{ef}			
Edge distance	Ccr,N	[mm]	1,5 · h _{ef}			
Spacing (splitting)	Scr,sp	[mm]	180	200	300	
Edge distance (splitting)	Ccr,sp	[mm]	90	100	150	

FIXDEX	
Performances Characteristic resistance under tension load	Annex C1

Table C2: Characteristic values of resistance under shear load in case of static and quasi-static loading

Size			M10	M12	M16		
Effective anchorage depth	h _{ef}	[mm]	55	63	80		
Steel failure without lever arn	Steel failure without lever arm						
Partial safety factor	γMs,V	[-]	1,7	1,7	1,7		
Ductility factor	k ₇	[-]	0,8	0,8	0,8		
Characteristic resistance	$V_{Rk,s}$	[kN]	12,1	18,8	46,1		
Steel failure with lever arm							
Partial safety factor	γMs,V	[-]	1,7	1,7	1,7		
Characteristic resistance	M^0 _{Rk,s}	[Nm]	89,5	154,7	366,7		
Concrete pryout failure							
Pry-out factor	k ₈	[-]	2,0	2,0	2,0		
Installation safety factor	γinst	[-]	1,2	1,0	1,2		
Concrete edge failure							
Installation safety factor	γinst	[-]	1,2	1,0	1,2		

FIXDEX	
Performances Characteristic resistance under shear load	Annex C2

Table C3: Displacements under tension load in case of static and quasi-static loading, C20/25 concrete

Size			M10	M12	M16
Tension load in uncracked concrete	N	[kN]	7,9	10,9	16,6
Corresponding	δηο	[mm]	0,02	0,07	0,09
displacement	δ _{N∞}	[mm]	1,0	1,0	1,0

Table C4: Displacements under tension load in case of static and quasi-static loading, C50/60 concrete

Size			M10	M12	M16
Tension load in uncracked concrete	N	[kN]	10,4	15,7	26,2
Corresponding	δηο	[mm]	0,14	0,21	0,32
displacement	δn∞	[mm]	1,0	1,0	1,0

Table C5: Displacements under shear load in case of static and quasi-static loading

Size			M10	M12	M16
Shear load in uncracked concrete	V	[kN]	4,0	6,2	15,3
Corresponding	δ_{V0}	[mm]	0,29	0,95	1,27
displacement	$\delta_{v\infty}$	[mm]	0,44	1,43	1,91

FIXDEX	
Performances Displacements	Annex C3