

Centre Scientifique et Technique du Bâtiment

84 avenue Jean Jaurès CHAMPS-SUR-MARNE F-77447 Marne-la-Vallée Cedex 2

Tél.: (33) 01 64 68 82 82 Fax: (33) 01 60 05 70 37

Evaluation Technique Européenne

ETE-05/0053 du 13/08/2015

General Part

Nom commercial Trade name **SPIT GRIP**

Famille de produit Product family

Cheville métallique en acier galvanisé, à expansion par déformation contrôlée, pour fixation dans le béton non

fissuré: diamètres M6, M8, M10, M12 et M16.

Deformation-controlled expansion anchor, made of galvanised steel, for use in non-cracked concrete: sizes

M6, M8, M10, M12 and M16.

Titulaire Manufacturer Société Spit Route de Lyon

F-26501 BOURG-LES-VALENCE

France

Usine de fabrication Manufacturing plants Société Spit Route de Lyon

F-26501 BOURG-LES-VALENCE

France

Cette evaluation contient: This Assessment contains 10 pages incluant 7 annexes qui font partie intégrante de

cette évaluation

10 pages including 7 annexes which form an integral part of

this assessment

Base de l'ETE Basis of ETA ETAG 001, Version April 2013, utilisée en tant que EAD

ETAG 001, Edition April 2013 used as EAD

Cette evaluation remplace: *This Assessment replaces*

ATE-05/0053 valide du 17/06/2013 au 17/06/2018

This Assessment replaces ETA-05/0053 with validity from 17/06/2013 to 17/06/2018

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Partie spécifique

1 Description technique du produit

La cheville SPIT GRIP de la gamme M6 à M16 est une cheville métallique galvanisée qui, après mise en place dans un trou de forage, est expansée par déformation contrôlée. La cheville SPIT GRIP est produite en deux versions (SPIT GRIP et SPIT GRIP L) différant par l'épaulement situé au sommet du corps de la SPIT GRIP L.

L'élément à fixer est maintenu avec une vis ou une tige filetée.

Voir figure et description du produit en Annexe A.

2 Définition de l'usage prévu

Les performances données en section 3 sont valables si la cheville est utilisée en conformité avec les spécifications et conditions données en Annexes B

Les dispositions prises dans la présente Evaluation Technique Européen reposent sur l'hypothèse que la durée de vie estimée de la cheville pour l'utilisation prévue est de 50 ans. Les indications relatives à la durée de vie ne peuvent pas être interprétées comme une garantie donnée par le fabricant, mais ne doivent être considérées que comme un moyen pour choisir les chevilles qui conviennent à la durée de vie économiquement raisonnable attendue des ouvrages.

3 Performance du produit

3.1 Résistance mécanique et stabilité (BWR 1)

Caractéristique essentielle	Performance
Résistance caractéristique en traction selon ETAG001, Annexe C et selon CEN/TS 1992-4	Voir Annexe C1
Résistance caractéristique en cisaillement selon ETAG001, Annexe C et selon CEN/TS 1992-4	Voir Annexe C2
Déplacements	Voir Annexe C3

3.2 Sécurité en cas d'incendie (BWR 2)

Caractéristique Essentielle	Performance
Reaction au feu	La cheville satisfait aux exigences de la classe A1

3.3 Hygiene, santé et environnement (BWR 3)

En ce qui concerne les substances dangereuses contenues dans la présente Evaluation Technique Européen, il peut y avoir des exigences applicables aux produits relevant de son domaine d'emploi (exemple: transposition de la législation européenne et des dispositions législatives, réglementaires et nationales). Afin de respecter les dispositions du Règlement Produits de Construction, ces exigences doivent également être satisfaites lorsque et où elles s'appliquent.

3.4 Sécurité d'utilisation (BWR 4)

Pour les exigences essentielles de Sécurité d'utilisation les mêmes critères que ceux mentionnés dans les exigences essentielles Resistance mécanique et stabilité sont applicables.

3.5 Protection contre le bruit (BWR 5)

Non applicable.

3.6 Economie d'énergie et isolation thermique (BWR 6)

Non applicable.

3.7 Utilisation durable des ressources naturelles (BWR 7)

Pour l'utilisation durable des ressources naturelles aucune performance a été déterminée pour ce produit.

3.8 Aspects généraux relatifs à l'aptitude à l'emploi

La durabilité et l'aptitude à l'usage ne sont assurées que si les spécifications pour l'usage prévu conformément à l'Annexe B1 sont maintenus.

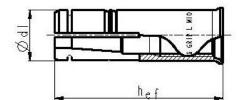
4 Evaluation et vérification de la constance des performances (EVCP)

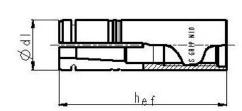
Conformément à la décision 96/582/EC de la Commission Européene ¹, tel que ammendée, le système d'évaluation et de vérification de la constance des performances (Voir Annexe V du règlement n° 305/2011 du parlement Européen) donné dans le tableau suivant s'applique.

Produit	Usage prévu	Niveau ou classe	Système
Ancrages métalliques pour le béton	Pour fixer et / ou soutenir les éléments structurels en béton ou les éléments lourds comme l'habillage et les plafonds suspendus	_	1

Données techniques nécessaires pour la mise en place d'un système Evaluation et de vérification de la constance des performances (EVCP)

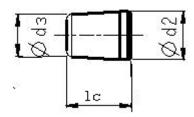
Les données techniques nécessaires à la mise en œuvre du système d'évaluation et de vérification de la constance des performances (EVCP) sont fixées dans le plan de contrôle déposé au Centre Scientifique et Technique du Bâtiment.


Le fabricant doit, sur la base d'un contrat, impliquer un organisme notifié pour les tâches visant la délivrance du certificat de conformité CE dans le domaine des fixations, basé sur ce plan de contrôle.


Délivré à Marne La Vallée le 13-08-2015 par Charles Baloche Directeur technique

[.]

Eléments et dimensions


GRIP L

GRIP

Bagues d'expansion - 1

Bouchon d'expansion - 2

Tableau 1: Dimensions

•	GRIP L et GRIP	L M6x30 M6x30	L M8x30 M8x30	L M10x30	L M10x40 M10x40	L M12x50 M12x50	L M16x65 M16x65
h	ef [mm]	30	30	30	40	50	65
d	l ₁ [mm]	7.95	9.95	11.95	11.95	14.9	19.8
d	l ₂ [mm]	5	6.5	8.2	8.2	10.3	13.8
d	l ₃ [mm]	4.1	5.8	7.1	7.1	9.3	12.9
I,	c [mm]	10	9.5	11	11	14	21

Tableau 2 : Matériaux

Partie	Désignation	Matériau	Protection
1	Bague d'expansion M6 à M16	Acier 11SMnPb30	Galvanisé ≥ 5 μm
2	Bouchon d 'expansion M6 à M16	FB10 NFA 35-053	Galvanisé ≥ 5 μm

Exigences pour la vis ou la tige filetée :

Classes de résistance minimale 4.6 selon EN ISO 898-1

SPIT GRIP	
Description du produit Produit, dimensions et matériaux	Annexe A1

Spécifications pour l'emploi prévu

Ancrages soumis à:

Actions statiques ou quasi statiques,

Matériaux supports:

- Béton armé ou non armé de masse volumique courante, de classes de résistance C20/25 au minimum à C50/60 au maximum, conformément au document EN 206: 2000-12.
- Béton non fissuré.

Conditions d'emploi (conditions d'environment):

• Structures soumises à une ambiance intérieure sèche ou avec condensation provisoire

Conception:

- Les ancrages sont conçus conformément à l'ETAG 001 Annexe C "Méthode de conception-calcul des ancrages" ou la norme CEN/TS 1992-4-4 "Conception-calcul des éléments de fixations pour béton" sous la responsabilité d'un ingénieur expert en ancrages et travaux de bétonnage.
- Des plans et notes de calculs vérifiables sont préparés en tenant compte des charges devant être ancrées. La position de la cheville est indiquée sur les plans de conception.

Installation:

- Mise en place de la cheville réalisée par du personnel qualifié, sous le contrôle du responsable technique du chantier.
- Utilisation de la cheville uniquement telle que fournie par le fabricant, sans échange de composants.
- Mise en place de la cheville conformément aux spécifications du fabricant et aux dessins préparés à cette fin, au moyen d'outils appropriés (Annexes A et B).
- La profondeur d'ancrage effective, les distances aux bords et l'espacement entre chevilles ne sont pas inférieurs aux valeurs spécifiées, absence tolérances négatives.
- La profondeur d'ancrage spécifiée est garantie lorsque la bague d'expansion ne dépasse pas la surface du béton.
- En cas de forage abandonné, percage d'un nouveau trou à une distance minimale de deux fois la profondeur du trou abandonné, ou à une distance plus petite si le trou abandonné est comblé avec du mortier à haute résistance, et aucune charge de cisaillement ou de traction oblique n'est appliquée en direction du trou abandonné.

SPIT GRIP	
Emploi prévu Spécifications	Annexe B1

Schéma de la cheville en service

h_{ef}: profondeur d'ancrage effective

d₀: diamètre du trou foré

h_I: profondeur du trou foré

d_f: diamètre du trou de passage

 $\begin{array}{cc} t_{\text{fix}}\colon & \text{\'epaisseur de la pi\`ece \`a} \\ & \text{\'fixer} \end{array}$

Tableau 3 : Données d'installation

Taille	Diamètre du trou foré	Diamètre du filetage	Profondeur du trou foré	Profondeur d'ancrage effective	Epaisseur minimum du béton	Filetage interne disponible	Profondeur de vissage minimum	Couple de serrage	Diamètre du trou de passage
	d_0	d	h ₁	h _{ef}	h _{min}	L_th	L_{sdmin}	T_{inst}	d _f
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[Nm]	[mm]
M6x30	8	6	32	30	100	13	10	5	7
M8x30	10	8	33	30	100	13	10	10	9
M10x30	12	10	33	30	100	12	11	22	12
M10x40	12	10	43	40	100	15	12	22	12
M12x50	15	12	54	50	100	21	14	36	14
M16x65	20	16	70	65	130	28	18	80	18

Tableau 4: Distances entre axes et au bord minimales

			M6x30	M8x30	M10x30	M10x40	M12x50	M16x65
Distance minimale entre axes	S _{min}	[mm]	60	70	80	95	125	130
Distance minimale au bord	C_{min}	[mm]	105	105	140	140	195	227

SPIT GRIP	
Emploi prévu Données d'installation	Annexe B2

Outil de pose et empreinte en fin d'expansion

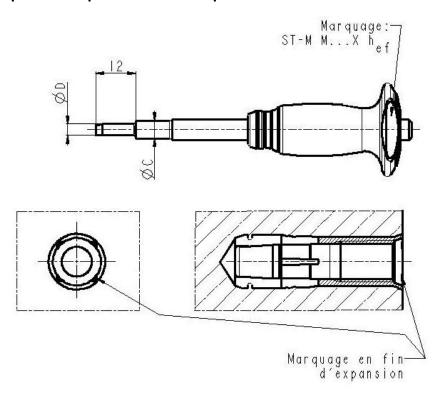


Tableau 5: Dimensions des outils de pose

Outil de pose	Cheville	Ø D	Ø C	l ₂
		[mm]	[mm]	[mm]
ST-M M6x30	M6x30	4.9	8.3	20.0
ST-M M8x30	M8x30	6.4	10.3	20.5
ST-M M10x30	M10x30	8.2	12.5	19.0
ST-M M10x40	M10x40	8.2	12.5	29.0
ST-M M12x50	M12x50	10.0	15.0	36.0
ST-M M16x65	M16x65	13.5	20.0	44.0

SPIT GRIP	
Emploi prévu Outils de pose	Annexe B3

Tableau 6 : Résistances caractéristiques aux charges de traction

Méthode de conception calcul A, selon ETAG001, Annexe C ou CEN/TS 1992-4

Wethode de C	conception	Calcul	A, Scioi	LIAO	001, AII	IIICAC C	J 04 S)LIV/IC	1332
Dimension de la cheville					M8x30*	M10x30*	M10×40	M12x50	M16x65
Rupture acier	-	_		-	_	-	-		
Résistance caractéristique acier 4.6		$N_{Rk,s}$	[kN]	8,0	14,6	23	3,2	33,7	62,8
Coefficient partiel de sécuri	té	γ _{Ms} 1)	-	2,0					
Résistance caractéristique	acier 5.6	$N_{Rk,s}$	[kN]	10,1	18,3	2	:9	42,2	78,5
Coefficient partiel de sécuri	té	γ _{Ms} 1)	-			2,0)		
Résistance caractéristique acier 5.8		$N_{Rk,s}$	[kN]	10,1	20,6	26,9		45,6	76,3
Coefficient partiel de sécurité		γ _{Ms} 1)	-	1,5	1,82	1,82		1,98	1,91
Résistance caractéristique acier 8.8		$N_{Rk,s}$	[kN]	15	20,6	26,9		45,6	76,3
Coefficient partiel de sécurité		γ _{Ms} 1)	-	1,63	1,82	1,82		1,98	1,91
Rupture par extraction-glissement = mode de ruine non décisif									
Rupture par cône de béto	n et rupture	par fen	dage ²⁾						
Profondeur d'ancrage effective		h _{ef}	[mm]	30	30	30	40	50	65
Facteur en béton non fissur	·é	k _{ucr} 3)	-	10,1					•
Facteur d 'accroissement C30/37				1,22					
C40/50		Ψc	-	1,41					
C50/60				1,55					
Coefficient partiel de sécurité		γ _{Mc} 1)	-		1,8 4)				
Distance entre axes		S _{cr,N}	[mm]		3⋅h _{ef}				
		S _{cr,sp}	[mm]	210	210	210	280	350	454
		C _{cr,N}	[mm]	1,5⋅h _{ef}					

^{*} usage restreint à l'ancrage d'éléments hyperstatiques

Distance au bord

[mm]

 $\mathbf{C}_{\text{cr,sp}}$

105

105

105

140

175

227

Le coefficient partiel de sécurité γ_2 = 1,2 est inclus

SPIT GRIP	
Conception-calcul selon ETAG001, Annexe C Résistances caractéristiques sous charges de traction	Annexe C1

¹⁾ En l'absence de réglementation nationale

Pour le calcul de la rupture par fendage, prendre la plus petite valeur de $N_{Rk,p}$ et $N_{Rk,c}^0$ dans l'équation 5.3 selon l' ETAG001 Annexe C

Paramètre relevant de la conception selon CEN/TS 1992-4:2009

ableau 7: Résistances caractéris Méthode de conception						ou (CEN/TS	199
Dimension de la cheville	M6x30*	M8x30*	M10x30*	M10x40	M12x50	M16x65		
Rupture acier sans bras de levier					<u> </u>		<u> </u>	
Facteur de ductilité 1)	k ₂	-		-	1,0)	-	-
Résistance caractéristique acier 4.6	$V_{Rk,s}$	[kN]	4,0	4,0 7,3 11,6			16,9	31,
Coefficient partiel de sécurité	γ _{Ms} 2)	-			1,6	7		
Résistance caractéristique acier 5.6	$V_{Rk,s}$	[kN]	5,0	9,2	14	1,5	21,1	39
Coefficient partiel de sécurité	γ _{Ms} 2)	-			1,6	7		
Facteur de ductilité ¹⁾	k ₂	-	0,8					
Résistance caractéristique acier 5.8	$V_{Rk,s}$	[kN]	4,2	10,3	13,4		22,8	38
Coefficient partiel de sécurité	γ _{Ms} 2)	-	1,36	1,52	1,52		1,65	1,5
Résistance caractéristique acier 8.8	$V_{Rk,s}$	[kN]	4,2	10,3	13,4		22,8	38
Coefficient partiel de sécurité	γ _{Ms} 2)	-	1,36	1,52	1,52		1,65	1,5
Rupture acier avec bras de levier								
Résistance caractéristique acier 4.6	$M^0_{Rk,s}$	[N.m]	5,1	15	15 30 5		52	13
Coefficient partiel de sécurité	γ _{Ms} 2)	-	1,67					
Résistance caractéristique acier 5.6	$M^0_{Rk,s}$	[N.m]	6,4	19	3	7	65	16
Coefficient partiel de sécurité	γ _{Ms} 2)	-			1,6	7		
Résistance caractéristique acier 5.8	$M^0_{Rk,s}$	[N.m]	6,4	19	3	7	65	16
Coefficient partiel de sécurité	γ _{Ms} ²⁾	-			1,2	5		
Résistance caractéristique acier 8.8	$M^0_{Rk,s}$	[N.m]	10,2	30	6	0	105	26
Coefficient partiel de sécurité	γ _{Ms} 2)	-	1,25				-	
Rupture du béton par effet de levier								
Facteur k	k ³⁾ k ₃ ⁴⁾	-	1				2	
Coefficient partiel de sécurité $\gamma_{Mc}^{2)}$ - 1,5 5								
Rupture du béton en bord de dalle								
Longueur effective de la cheville sous charge de cisaillement	I _f	[mm]	30	30	30	40	50	65

Diamètre extérieur de la cheville

Coefficient partiel de sécurité

charge de cisaillement

 $d_{no\underline{\underline{m}}}$

7,95

[mm]

9,95

SPIT GRIP

Conception-calcul selon ETAG001, Annexe C ou CEN/TS 1992-4

Résistances caractéristiques sous charges de cisaillement

Annexe C2

11,95

1,5 5)

14,9

19,8

^{*} usage restreint à l'ancrage d'élément hyperstatiques

¹⁾ Paramètre relevant de la conception selon CEN/TS 1992-4:2009, 6.3.3.1

²⁾ En l'absence de réglementation nationale

³⁾ Paramètre relevant de la conception selon ETAG 001 Annexe C, facteur dans l'éq. (5.6) de 5.2.3.3

⁴⁾ Paramètre relevant de la conception selon CEN/TS 1992-4:2009

⁵⁾ Le coefficient partiel de sécurité γ_2 = 1,0 est inclus

Tableau 8: Déplacement sous charges de traction

Dimension de la cheville			M6x30*	M8x30*	M10x30*	M10x40	M12x50	M16x65	
Charge de traction dans du béton non fissuré C20/25 à C50/60 [kN]		5,1	5,1	5,1	7,8	11,0	16,2		
		[mm]	0,10						
Déplacement	$\delta_{N\infty}$	[mm]	0,15						

^{*} Utilisation restreinte à l'ancrage d'éléments hyperstatiques seulement.

Tableau 9: Déplacement sous charges de cisaillement

Dimension de la cheville			M6x30*	M8x30*	M10x30*	M10x40	M12x50	M16x65
Charge de cisaillement dans du béton non fissuré C20/25 à C50/60 [kN]		5,1	5,1	5,1	7,8	11,0	16,2	
Déplacement $ \begin{array}{c c} \delta_{\text{V0}} & \text{[mm]} \\ \\ \delta_{\text{V}\infty} & \text{[mm]} \end{array} $		0,10						
		[mm]	0,15					

SPIT GRIP	
Conception-Calcul, méthode A Déplacements	Annexe C3