

Centre Scientifique et

Technique du Bâtiment

84 avenue Jean Jaurès CHAMPS-SUR-MARNE F-77447 Marne-la-Vallée Cedex 2

Tél. : (33) 01 64 68 82 82 Fax : (33) 01 60 05 70 37

General Part

European Technical Assessment

ETA-12/0174 of 04/03/2014

English translation prepared by CSTB - Original version in French language

Nom commercial **POWERS PB-PRO-S** Trade name Famille de produit Cheville métallique à expansion par vissage à couple Product family contrôlé, de fixation dans le béton fissuré et non fissuré diamètres M8, M10, M12 et M16 Torque-controlled expansion anchor for use in cracked and uncracked concrete: sizes M8, M10, M12 and M16 Titulaire Powers Fasteners Europe Manufacturer Stanley Black&Decker Deutschland GmbH European Anchor Development Center Black-&-Decker Str. 40 65510 Idstein Germany Usine de fabrication e Plant 1 & 2 Manufacturing plants 17 pages incluant 14 annexes qui font partie intégrante de Cette evaluation contient: cette évaluation This Assessment contains 17 pages including 14 annexes which form an integral part of this assessment Base de l'ETE ETAG 001, Version April 2013, utilisée en tant que DEE Basis of ETA ETAG 001, Edition April 2013 used as EAD Cette evaluation remplace: ATE 12/0174 du 06/01/2014 This Assessment replaces ETA-12/0174 of 06/01/2014

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

www.eota.eu

Specific part

1 Technical description of the product

The POWERS PB-PRO-S anchor is an anchor made of zinc electroplated steel which is placed into a drilled hole and anchored by torque-controlled expansion.

The anchor is placed into a drilled hole and anchored by torque-controlled expansion.

The illustration and the description of the product are given in Annexes A.

2 Specification of the intended use

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annexes B.

The provisions made in this European technical assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic tension resistance acc. ETAG001, Annex C	See Annex C 1
Characteristic shear resistance acc. ETAG001, Annex C	See Annex C 2
Characteristic tension resistance acc. CEN/TS 1992-4	See Annex C 5
Characteristic shear resistance acc. CEN/TS 1992-4	See Annex C 6
Characteristic resistance under seismic action acc. TR045	See Annex C 9
Displacements	See Annex C 10

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Characteristic tension resistance under fire acc. ETAG001, Annex C	See Annex C 3
Characteristic shear resistance under fire acc. ETAG001, Annex C	See Annex C 4
Characteristic tension resistance under fire acc. CEN/TS 1992-4	See Annex C 7
Characteristic shear resistance under fire acc. CEN/TS 1992-4	See Annex C 8

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances contained in this European technical approval, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

For Basic requirement Safety in use the same criteria are valid as for Basic Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not relevant.

3.6 Energy economy and heat retention (BWR 6)

Not relevant.

3.7 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was determined for this product.

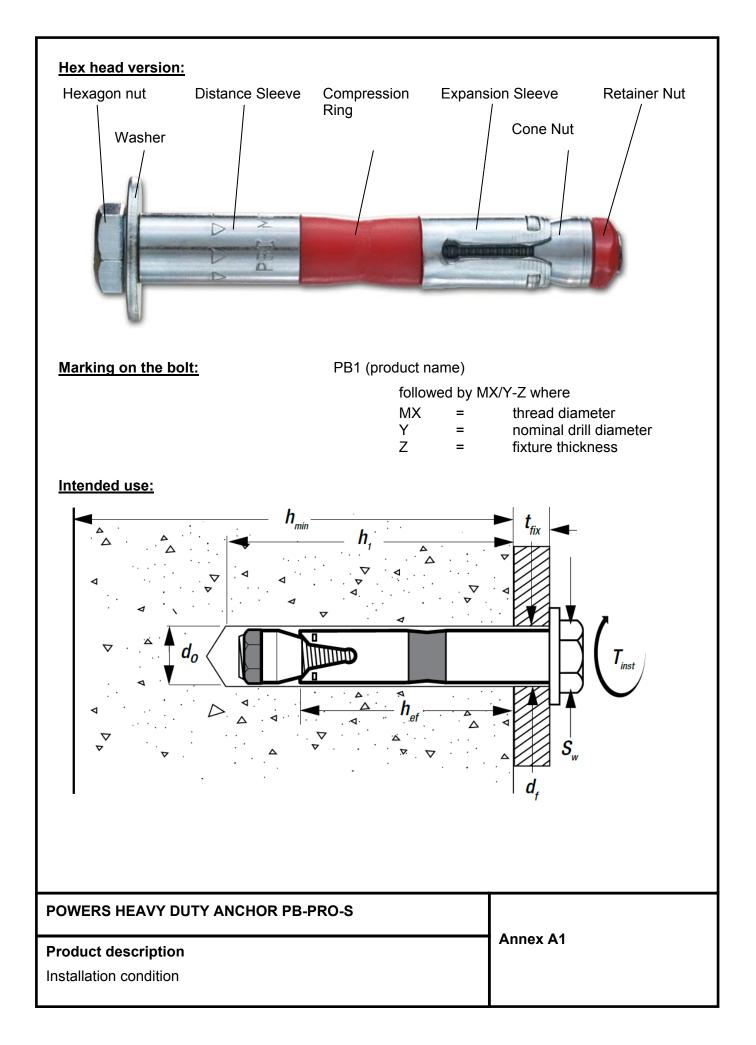
3.8 General aspects relating to fitness for use

Durability and Serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

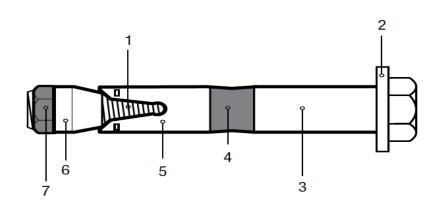
4 Assessment and verification of constancy of performance (AVCP)

According to the Decision 96/582/EC of the European Commission¹, as amended, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for use in concrete	For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the works) or heavy units	Ι	1


5 Technical details necessary for the implementation of the AVCP system

Technical details necessary for the implementation of the Assessment and verification of constancy of performance (AVCP) system are laid down in the control plan deposited at Centre Scientifique et Technique du Bâtiment.


The manufacturer shall, on the basis of a contract, involve a notified body approved in the field of anchors for issuing the certificate of conformity CE based on the control plan.

Issued in Marne La Vallée on 04-03-2014 by Charles Baloche Directeur technique

The original French version is signed

Different parts of the anchor:

Table 1: Materials

Part	Designation	Material	Protection
1	Threaded bolt	C-Steel f _{uk} ≥ 800N/mm²	Zinc plated > 5 μ m
2	Washer	Steel property class 8.8 acc. to EN ISO 7093	Zinc plated > 5 μ m
3	Distance sleeve	C-steel	Zinc plated > 5 μ m
4	Compression ring	Plastic element, HDPE	
5	Expansion sleeve	C-steel	Zinc plated > 5 μ m
6	Cone nut	C-steel	Zinc plated > 5 μ m
7	Retainer nut	Plastic element, HDPE	

POWERS HEAVY DUTY ANCHOR PB-PRO-S	
Product descripion	Annex A2
Material	

Specifications of intended use

Anchorages subject to:

• Static, quasi-static, seismic loads and fire.

Base materials:

- Cracked concrete and non-cracked concrete
- Reinforced or unreinforced normal weight concrete of strength classes C 20/25 at least to C50/60 at most according to ENV 206: 2000-12.

Use conditions (Environmental conditions):

• Structures subject to dry internal conditions.

Design:

- The anchorages are designed in accordance with the ETAG001 Annex C "Design Method for Anchorages" or CEN/TS 1992-4-4 " Design of fastenings for use in concrete" under the responsibility of an engineer experienced in anchorages and concrete work.
- For seismic application the anchorages are designed in accordance with TR045 "Design of Metal Anchors For Use In Concrete Under Seismic Actions".
- For application with resistance under fire exposure the anchorages are designed in accordance with method given in TR020 "Evaluation of Anchorage in Concrete concerning Resistance to Fire".
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools.
- Effective anchorage depth, edge distances and spacing not less than the specified values without minus tolerances.
- Hole drilling by hammer drill.
- Cleaning of the hole of drilling dust.
- Application of specified torque moment using a calibrated torque wrench.
- In case of aborted hole, drilling of new hole at a minimum distance of twice the depth of the aborted hole, or smaller distance provided the aborted drill hole is filled with high strength mortar and no shear or oblique tension loads in the direction of aborted hole.

POWERS HEAVY DUTY ANCHOR PB- PRO-S	
Intended Use	Annex B2
Specifications	

Table 2: Anchor dimensions			PB- PRO-S M8/12	PB- PRO-S M10/15	PB- PRO-S M12/18	PB- PRO-S M16/24	
	Min.		[mm]	77	91	86	130
Length of the anchor	Max.	- L	[mm]	176	200	201	229
Fixture thickness	Min.	4	[mm]	1	1	1	1
Fixture thickness	Max.	Max. t _{fix} [n		100	100	100	100
Length expansion sleev	Length expansion sleeve I _{clip} [mm]		21,5	27	33	44	
Width torque wrench		SW	[mm]	13	17	19	24

Table 3: Installation data			PB- PRO-S M8/12	PB- PRO-S M10/15	PB- PRO-S M12/18	PB- PRO-S M16/24
Drill hole diameter	d _{cut}	[mm]	≤ 12,50	≤ 15,50	≤ 18,50	≤ 24,55
Drill hole depth	h₁	[mm]	95	110	125	155
Embedment depth	h _{ef}	[mm]	60	70	80	100
Installation torque	T _{inst}	[Nm]	30	45	90	130
Diameter through hole fixture	d _f	[mm]	14	17	20	26
Min. member thickness	h _{min}	[mm]	120	140	160	200
Minimum edge distance	C _{min}	[mm]	80	100	120	140
Corresponding spacing	s≥	[mm]	140	180	220	230
Minimum spacing	S _{min}	[mm]	65	65	100	130
Corresponding edge distance	c≥	[mm]	140	150	220	240

POWERS HEAVY DUTY ANCHOR PB- PRO-S	
Intended Use Installation parameters	Annex B3

				PB- PRO-S M8/12	PB- PRO-S M10/15	PB- PRO-S M12/18	PB- PRO-S M16/24	
Steel failure								
Char. resistance		N _{Rk,s}	[kN]	29,3	46,4	67,4	125,6	
Partial safety factor		γ _{Ms} ¹⁾	[-]		1	,5		
Pullout failure N _{Rk,p} =	=Ψ _c x N ⁰ _{Bkp}							
Char. resistance in	cracked	N ⁰ _{Rk,p}	[kN]	12	16	20	30	
concrete C20/25	non-cracked	N ⁰ _{Rk,p}	[kN]	12	25	30	35	
Partial safety factor for cracked or non-cra	acked concrete	γ _{Mp} ¹⁾	[-]		1,	5 ²⁾		
	concrete C30/37		[-]		1,	22		
Increasing factor for N _{RK}	concrete C40/50	Ψc	[-]	1,41				
	concrete C50/60		[-]		1,55			
Concrete cone failure and splitting failure Effective embedment depth h _{ef} [mm] 60 70 80 1					100			
Partial safety factor for craked or non-cra	cked concrete	$\gamma_{Mc} = \gamma_{Msp}^{1}$		1,5 ²⁾				
	concrete C30/37		[-]	1,22				
Increasing factor for N _{RK}	concrete C40/50	Ψc	[-]		1,41			
	concrete C50/60		[-]		1,	,55		
Char. spacing	concrete cone failure	S _{cr,N}	[mm]	180	210	240	300	
	splitting failure	S _{cr,sp}	[mm]	300	350	400	500	
Char. edge distance	concrete cone failure	C _{cr,N}	[mm]	90	105	120	150	
	splitting failure	C _{cr,sp}	[mm]	150	175	200	250	
	-	¹⁾ In absence of other national regulations ²⁾ The value contains an installation safety factor γ_2 = 1.0						
¹⁾ In absence of oth ²⁾ The value contain	er national regulations ns an installation safety fac	ctor γ ₂ = 1.0						
¹⁾ In absence of oth ²⁾ The value contain OWERS HEAVY DUT								
	Y ANCHOR PB- PRO			Ann	ex C1			

able 5: Characteristic values for shear loads in case of static and quasi static loading for esign method A acc. ETAG001, Annex C						
			PB- PRO-S M8/12	PB- PRO-S M10/15	PB- PRO-S M12/18	PB- PRO-S M16/24
Steel failure without lever arm						
Char. resistance	V _{Rk,s}	[kN]	32,7	53,6	76,6	89,8
Partial safety factor	γ _{Ms} 1)	[-]		1,:	25	
Steel failure with lever arm						
Char. bending resistance	M ⁰ _{Rk,s}	[Nm]	30,0	59,8	104,8	266,4
Partial safety factor	γ _{Ms} 1)	[-]	1,25			
Concrete pry-out failure						
Factor in equation (5.6) of ETAG Annex C, § 5.2.3.3	k	[-]		2	,0	
Partial safety factor	γ _{Mc} 1)	[-]		1	,5	
Concrete edge failure						
Effective length of anchor under shear loading	l _f	[mm]	60	70	80	100
Outside diameter of anchor	d _{nom}	[mm]	12	15	18	24
Partial safety factor	γ _{Mc} 1)	[-]		1	,5	

¹⁾ In absence of other national regulations

POWERS HEAVY DUTY ANCHOR PB- PRO-S	
Design according to ETAG001, Annex C	Annex C2
Characteristic resistance under shear loads	

Table 6: Characteristic tension resistance in cracked and non-cracked concrete under fire exposure for design method A acc. ETAG001, Annex C

			PB- PRO-S M8/12	PB- PRO-S M10/15	PB- PRO-S M12/18	PB- PRO-S M16/24		
Steel failure								
Characteristic registeres	R30 N _{Rk,s,fi}	[kN]	0,4	0,9	1,7	3,1		
	R60 N _{Rk,s,fi}	[kN]	0,3	0,8	1,3	2,4		
Characteristic resistance	R90 N _{Rk,s,fi}	[kN]	0,3	0,6	1,1	2,0		
	R120 N _{Rk,s,fi}	[kN]	0,2	0,5	0,8	1,6		
Pullout failure (cracked and non-cracked concrete)								
	R30 N _{Rk,p,fi}	[kN]	3,0	4,0	5,0	7,5		
Char. resistance in concrete ≥ C20/25	R60 N _{Rk,p,fi}	[kN]	3,0	4,0	5,0	7,5		
	R90 N _{Rk,p,fi}	[kN]	3,0	4,0	5,0	7,5		

Concrete cone and splitting failure ²⁾ (cracked and non-cracked concrete)								
Char. resistance in concrete ≥ C20/25	R30 N ⁰ _{Rk,c,fi}	[kN]	5,0	7,4	10,3	18,0		
	R60 N ⁰ _{Rk,c,fi}	[kN]	5,0	7,4	10,3	18,0		
	R90 N ⁰ _{Rk,c,fi}	[kN]	5,0	7,4	10,3	18,0		
	R120 N ⁰ _{Rk,c,fi}	[kN]	4,0	5,9	8,2	14,4		
Characteristic spacing	S _{cr,N,fi}	[mm]	240	280	320	400		
Characteristic edge distance	C _{cr,N,fi}	[mm]	120	140	160	200		

R120 N_{Rk,p,fi}

[kN]

2,4

3,2

4.0

6.0

¹⁾ Design under fire exposure is performed according to the design method given in TR 020. Under fire exposure usually cracked concrete is assumed. The design equations are given in TR 020, Section 2.2.1.

²⁾ As a rule, splitting failure can be neglected when cracked concrete and reinforcement is assumed.

TR 020 covers design for fire exposure from one side. For fire attack from more than one side the edge distance must be increased to $c_{min} \ge 300$ mm and $\ge 2 \cdot h_{ef}$.

POWERS HEAVY DUTY ANCHOR PB- PRO-S	
Design according to ETAG001, Annex C Characteristic tension resistance under fire exposure	Annex C3

Table 7: Characteristic shear resistance in cracked and non-cracked concrete under fire
exposure for design method A acc. ETAG001, Annex C

· · ·								
		PB- PRO-S M8/12	PB- PRO-S M10/15	PB- PRO-S M12/18	PB- PRO-S M16/24			
R30 V _{Rk,s,fi}	[kN]	0,4	0,9	1,7	3,1			
R60 V _{Rk,s,fi}	[kN]	0,3	0,8	1,3	2,4			
R90 V _{Rk,s,fi}	[kN]	0,3	0,6	1,1	2,0			
R120 V _{Rk,s,fi}	[kN]	0,2	0,5	0,8	1,6			
Steel failure with lever arm								
R30 M ⁰ _{Rk.s.fi}	[Nm]	0,4	1,1	2,6	6,7			
	[Nm]	0,3	1,0	2,0	5,0			
	[Nm]	0,3	0,7	1,7	4,3			
R120 M ⁰ _{Rk,s,fi}	[Nm]	0,2	0,6	1,3	3,3			
k	[-]		2,	,0				
R30 V _{Rk,cp,fi}	[kN]	10,0	14,8	20,6	36,0			
R60 V _{Rk, cp,fi}	[kN]	10,0	14,8	20,6	36,0			
R90 V _{Rk, cp,fi}	[kN]	10,0	14,8	20,6	36,0			
R120 V _{Rk, cp,fi}	[kN]	8,0	10,8	16,4	28,8			
۱ _f	[mm]	60	70	80	100			
d _{nom}	[mm]	12	15	18	24			
	$\begin{array}{c} R60 \ V_{Rk,s,fi} \\ \hline R90 \ V_{Rk,s,fi} \\ \hline R120 \ V_{Rk,s,fi} \\ \hline R120 \ V_{Rk,s,fi} \\ \hline R30 \ M^0_{Rk,s,fi} \\ \hline R60 \ M^0_{Rk,s,fi} \\ \hline R90 \ M^0_{Rk,s,fi} \\ \hline R120 \ M^0_{Rk,s,fi} \\ \hline R120 \ M^0_{Rk,s,fi} \\ \hline R120 \ V_{Rk,cp,fi} \\ \hline R60 \ V_{Rk,cp,fi} \\ \hline R90 \ V_{Rk,cp,fi} \\ \hline R120 \ V_{Rk,cp,fi} \\ \hline \end{array}$	R60 V _{Rk,s,fi} [kN] R90 V _{Rk,s,fi} [kN] R120 V _{Rk,s,fi} [kN] R30 M ⁰ _{Rk,s,fi} [Nm] R60 M ⁰ _{Rk,s,fi} [Nm] R90 M ⁰ _{Rk,s,fi} [Nm] R120 M ⁰ _{Rk,s,fi} [Nm] R30 M ⁰ _{Rk,s,fi} [Nm] R90 M ⁰ _{Rk,s,fi} [Nm] R120 M ⁰ _{Rk,s,fi} [Nm] R120 M ⁰ _{Rk,s,fi} [Nm] R120 M ⁰ _{Rk,cp,fi} [kN] R120 V _{Rk,cp,fi} [kN]	RO-S M8/12 R30 V _{Rk,s,fi} [kN] 0,4 R60 V _{Rk,s,fi} [kN] 0,3 R90 V _{Rk,s,fi} [kN] 0,3 R120 V _{Rk,s,fi} [kN] 0,2 R30 M ⁰ _{Rk,s,fi} [Nm] 0,4 R60 M ⁰ _{Rk,s,fi} [Nm] 0,2 R120 V _{Rk,s,fi} [Nm] 0,3 R120 M ⁰ _{Rk,s,fi} [Nm] 0,2 K [-] I R30 V _{Rk,cp,fi} [Nm] 0,0 R60 V _{Rk,cp,fi} [kN] 10,0 R90 V _{Rk,cp,fi} [kN] 10,0 R90 V _{Rk,cp,fi} [kN] 8,0 R120 V _{Rk,cp,fi} [kN] 8,0	PRO-S M8/12PRO-S M10/15R30 $V_{Rk,s,fi}$ [kN]0,40,9R60 $V_{Rk,s,fi}$ [kN]0,30,8R90 $V_{Rk,s,fi}$ [kN]0,30,6R120 $V_{Rk,s,fi}$ [kN]0,20,5R30 $M^0_{Rk,s,fi}$ [Nm]0,41,1R60 $M^0_{Rk,s,fi}$ [Nm]0,31,0R90 $M^0_{Rk,s,fi}$ [Nm]0,30,7R120 $M^0_{Rk,s,fi}$ [Nm]0,20,6k[-]20,6k[-]2R30 $V_{Rk,cp,fi}$ [kN]10,014,8R60 $V_{Rk,cp,fi}$ [kN]10,014,8R90 $V_{Rk,cp,fi}$ [kN]10,014,8R90 $V_{Rk,cp,fi}$ [kN]10,014,8R120 $V_{Rk,cp,fi}$ [kN]10,014,8R120 $V_{Rk,cp,fi}$ [kN]10,014,8R90 $V_{Rk,cp,fi}$ [kN]8,010,8If[mm]6070	PRO-S M8/12PRO-S M10/15PRO-S M12/18R30 V Rk.s.fi[KN]0,40,91,7R60 V Rk.s.fi[KN]0,30,81,3R90 V Rk.s.fi[KN]0,30,61,1R120 V Rk.s.fi[KN]0,20,50,8R30 M Rk.s.fi[Nm]0,41,12,6R60 M Rk.s.fi[Nm]0,31,02,0R90 M Rk.s.fi[Nm]0,30,71,7R120 M Rk.s.fi[Nm]0,30,71,3K[-]2,00,61,3K[-]2,01,31,3R30 V Rk.cp.fi[Nm]0,20,61,3K[-]2,01,42,0R30 V Rk.cp.fi[kN]10,014,820,6R60 V Rk.cp.fi[kN]10,014,820,6R90 V Rk.cp.fi[kN]10,014,820,6R120 V Rk.cp.fi[kN]8,010,816,4I f[mm]607080			

¹⁾ Design under fire exposure is performed according to the design method given in TR 020. Under fire exposure usually cracked concrete is assumed. The design equations are given in TR 020, Section 2.2.2.

TR 020 covers design for fire exposure from one side. For fire attack from more than one side the edge distance must be increased to $c_{min} \ge 300 \text{ mm}$ and $\ge 2 \cdot h_{ef}$.

POWERS HEAVY DUTY ANCHOR PB- PRO-S	
Design according to ETAG001, Annex C	Annex C4
Characteristic shear resistance under fire exposure	

				PB- PRO-S M8/12	PB- PRO-S M10/15	PB- PRO-S M12/18	PB- PRO-S M16/24	
Steel failure								
Char. resistance		N _{Rk,s}	[kN]	29,3	46,4	67,4	125,6	
Partial safety factor		γ _{Ms} 1)	[-]		1	,5		
Pullout failure N _{Rk,p} =	$\Psi_{c} \times N^{0}_{Bk,p}$							
Char. resistance in	cracked	N ⁰ _{Rk,p}	[kN]	12	16	20	30	
concrete C20/25	non-cracked	N ⁰ _{Rk,p}	[kN]	12	25	30	35	
Partial safety factor	che di con cuesto	γ _{Mp} ¹⁾	[-]		1,5 ²⁾			
or cracked or non-cra					4	~~~		
Increasing factor for $N_{RK,p}$	concrete C30/37	Ψc	[-]			22		
	concrete C40/50 concrete C50/60		[-]	1,41				
	concrete C30/00		[-]		Ι,	55		
concrete cone failur	e and splitting failure							
Effective embedment	depth	h _{ef}	[mm]	60	70	80	100	
actor for cracked cor	ncrete	k _{cr}		7,2				
actor for non cracked	d concrete	k _{ucr}			10),1		
Partial safety factor		$\gamma_{Mc} = \gamma_{Msp}^{1}$			1,	5 ²⁾		
Char. spacing	concrete cone failure	S _{cr,N}	[mm]	180	210	240	300	
shar. spacing	splitting failure	S _{cr,sp}	[mm]	300	350	400	500	
Char. edge distance	concrete cone failure	C _{cr,N}	[mm]	90	105	120	150	
	splitting failure	C _{cr,sp}	[mm]	150	175	200	250	
¹⁾ In absence of othe ²⁾ The value contain	er national regulations s an installation safety facto	or γ ₂ = 1.0						
WERS HEAVY DUTY	ANCHOR PB- PRO-	S						

Table 9: Characteristic values for shear loads in case of static and quasi static loading fordesign design method A acc.CEN/TS 1992-4

			PB- PRO-S M8/12	PB- PRO-S M10/15	PB- PRO-S M12/18	PB- PRO-S M16/24
Steel failure without lever arm						
Char. resistance	V _{Rk,s}	[kN]	32,7	53,6	76,6	89,8
Factor considering ductility	k ₂	[-]		0,	,8	
Partial safety factor	γ _{Ms} 1)	[-]		1,2	25	
Steel failure with lever arm						
Char. bending moment	$M^0_{Rk,s}$	[Nm]	30,0	59,8	104,8	266,4
Partial safety factor	γ _{Ms} 1)	[-]		1,:	25	
Concrete pry-out failure						
Factor in equation (16) of CEN TS 1992-4-4, § 6.2.2.3	k ₃	[-]		2,	,0	
Partial safety factor	γ _{Mc} 1)	[-]		1,	,5	
Concrete edge failure						
Effective length of anchor under shear loading	۱ _f	[mm]	60	70	80	100
Outside diameter of anchor	d _{nom}	[mm]	12	15	18	24
Partial safety factor	γ _{Mc} ¹⁾	[-]		1,	,5	

¹⁾ In absence of other national regulations

POWERS HEAVY DUTY ANCHOR PB- PRO-S	
Design according to CEN/TS 1992-4 Characteristic resistance under shear loads	Annex C6

Table 10: Characteristic tension resistance in cracked and non-cracked concrete under fire exposure for design method A acc. CEN/TS 1992-4

			PB- PRO-S M8/12	PB- PRO-S M10/15	PB- PRO-S M12/18	PB- PRO-S M16/24		
Steel failure								
	R30 N _{Rk,s,fi}	[kN]	0,4	0,9	1,7	3,1		
Characteristic resistance	R60 N _{Rk,s,fi}	[kN]	0,3	0,8	1,3	2,4		
	R90 N _{Rk,s,fi}	[kN]	0,3	0,6	1,1	2,0		
	R120 N _{Rk,s,fi}	[kN]	0,2	0,5	0,8	1,6		
Pullout failure (cracked and non-cracked concrete)								
	R30 N _{Rk,p,fi}	[kN]	3,0	4,0	5,0	7,5		

	RSU N _{Rk,p,fi}	[KIN]	3,0	4,0	5,0	7,5
Char. resistance in concrete ≥ C20/25	R60 N _{Rk,p,fi}	[kN]	3,0	4,0	5,0	7,5
	R90 N _{Rk,p,fi}	[kN]	3,0	4,0	5,0	7,5
	R120 N _{Rk,p,fi}	[kN]	2,4	3,2	4,0	6,0

Concrete cone and splitting failure ²⁾ (cracked and non-cracked concrete)								
Char. resistance in concrete ≥ C20/25	R30 N ⁰ _{Rk,c,fi}	[kN]	5,0	7,4	10,3	18,0		
	R60 N ⁰ _{Rk,c,fi}	[kN]	5,0	7,4	10,3	18,0		
	R90 N ⁰ _{Rk,c,fi}	[kN]	5,0	7,4	10,3	18,0		
	R120 N ⁰ _{Rk,c,fi}	[kN]	4,0	5,9	8,2	14,4		
Characteristic spacing	S _{cr,N,fi}	[mm]	240	280	320	400		
Characteristic edge distance	C _{cr,N,fi}	[mm]	120	140	160	200		

¹⁾ Design under fire exposure is performed according to the design method given in TR 020. Under fire exposure usually cracked concrete is assumed. The design equations are given in TR 020, Section 2.2.1.

²⁾ As a rule, splitting failure can be neglected when cracked concrete and reinforcement is assumed.

TR 020 covers design for fire exposure from one side. For fire attack from more than one side the edge distance must be increased to $c_{min} \ge 300$ mm and $\ge 2 \cdot h_{ef}$.

POWERS HEAVY DUTY ANCHOR PB- PRO-S	
Design according to CEN/TS 1992-4 Characteristic tension resistance under fire exposure	Annex C7

Table 11: Characteristic shear resistance in cracked and non-cracked concrete under fire exposure for design method A acc. CEN/TS 1992-4

		I					
			PB- PRO-S M8/12	PB- PRO-S M10/15	PB- PRO-S M12/18	PB- PRO-S M16/24	
Steel failure without lever arm							
	R30 V _{Rk,s,fi}	[kN]	0,4	0,9	1,7	3,1	
Ol	R60 V _{Rk,s,fi}	[kN]	0,3	0,8	1,3	2,4	
Characteristic resistance	R90 V _{Rk,s,fi}	[kN]	0,3	0,6	1,1	2,0	
	R120 V _{Rk,s,fi}	[kN]	0,2	0,5	0,8	1,6	
Steel failure with lever arm							
	R30 M ⁰ _{Rk,s,fi}	[Nm]	0,4	1,1	2,6	6,7	
	R60 M ⁰ _{Rk,s,fi}	[Nm]	0,3	1,0	2,0	5,0	
Characteristic bending moment	R90 M ⁰ _{Rk,s,fi}	[Nm]	0,3	0,7	1,7	4,3	
	R120 M ⁰ _{Rk,s,fi}	[Nm]	0,2	0,6	1,3	3,3	
Concrete pry-out failure			ı				
Factor in equation (16) of CEN TS 1992-4-4, § 6.2.2.3	k ₃	[-]	2,0				
	R30 V _{Rk,cp,fi}	[kN]	10,0	14,8	20,6	36,0	
Characteristic resistance	R60 V _{Rk, cp,fi}	[kN]	10,0	14,8	20,6	36,0	
Characteristic resistance	R90 V _{Rk, cp,fi}	[kN]	10,0	14,8	20,6	36,0	
	R120 V _{Rk, cp,fi}	[kN]	8,0	10,8	16,4	28,8	
Concrete edge failure							
Eff. length of anchor under shear loading	l _f	[mm]	60	70	80	100	
Outside diameter of anchor	d _{nom}	[mm]	12	15	18	24	
¹⁾ Design under fire exposure is performed a usually cracked concrete is assumed. The						osure	
TR 020 covers design for fire exposure edge distance must be increased to c_{min}			ttack fron	n more th	an one si	de the	

POWERS HEAVY DUTY ANCHOR PB- PRO-S	
Design according to CEN/TS 1992-4 Characteristic shear resistance under fire exposure	Annex C8

Anchor sizes			PB- PRO-S M8/12	PB- PRO-S M10/15	PB- PRO-S M12/18	PB- PRO-S M16/24	
Tension load							
Steel failure							
Characteristic resistance	N _{Rk,s,seis}	[kN]	29,3	46,4	67,4	125,6	
Partial safety factor	γMs,seis	[-]	1,5				
Pull-out failure $N_{Rk,p,seis} = \Psi_c \times N^0_{Rk,p,seis}$							
Characteristic resistance	N ⁰ _{Rk,p,seis}	[kN]	12,0	16,0	20,0	30,0	
Partial safety factor	$\gamma_{Mp, seis}$ 1)	[-]		1,	5 ¹⁾		
Shear loads							
Steel failure without lever arm							
Characteristic resistance	$V_{Rk,s,seis}$	[kN]	21,7	28,9	45,5	69,6	
Partial safety factor	γ̃Ms, seis	[-]		1,	25		

¹⁾ In absence of other national regulations

POWERS HEAVY DUTY ANCHOR PB- PRO-S

Design according to TR045

Characteristic resistance under seismic actions

Annex C9

able 13: Displacements under te	ension le	bading				
			PB- PRO-S M8/12	PB- PRO-S M10/15	PB- PRO-S M12/18	PB- PRO-S M16/24
Tension load in non-cracked concrete C20/25 [kN]			5,7	11,9	14,3	16,7
Dianlagoment	δ_{N0}	[mm]	0,18	0,40	0,50	0,63
Displacement	δ _N ∞	[mm]	1,21	1,18	1,37	1,41
Tension load in non-cracked concrete C50/60 [kN]			8,9	18,5	22,1	25,8
Displacement	δ_{N0}	[mm]	0,28	0,61	0,77	0,98
	δ _N ∞	[mm]	1,21	1,18	1,37	1,41
Tension load in cracked concre	5,7	7,6	9,5	14,3		
Displacement	δ _{N0}	[mm]	0,28	0,34	0,38	0,44
	δ _N ∞	[mm]	1,21	1,18	1,37	1,41
Tension load in cracked concrete C50/60 [kN]			8,9	11,8	14,8	22,1
Displacement	δ_{N0}	[mm]	0,44	0,53	0,59	0,68
	δ _N ∞	[mm]	1,21	1,18	1,37	1,41

Table 14: Displacements under shear loads

			PB- PRO-S M8/12	PB- PRO-S M10/15	PB- PRO-S M12/18	PB- PRO-S M16/24
Shear load in cracked and non-cracked [kN] concrete C20/25 to C50/60		18,7	30,6	43,8	31,3	
Displacement δ_{V0}	δ_{V0}	[mm]	0,01	0,50	1,39	3,23
	[mm]	0,02	0,74	2,09	4,85	

Additional displacement due to anular gap between anchor and fixture is to be taken into account.

POWERS HEAVY DUTY ANCHOR PB- PRO-S	A
Design Displacements	Annex C10