

Centre Scientifique et Technique du Bâtiment

84 avenue Jean Jaurès CHAMPS-SUR-MARNE F-77447 Marne-la-Vallée Cedex 2

Tél.: (33) 01 64 68 82 82 Fax: (33) 01 60 05 70 37

European Technical Assessment

ETA-15/0313 of 15/06/2015

English translation prepared by CSTB - Original version in French language

General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011:

Nom commercial Trade name	Fikstek Vesta PRO-ONE
Famille de produit Product family	Cheville à scellement de type "capsule" pour fixation dans le béton non fissuré M8, M10, M12, M14, M16, M20, M22, M24 et M30.
	Chemical anchor capsule for use in non cracked concrete: sizes M8, M10, M12, M14, M16, M20, M22, M24 and M30
Titulaire <i>Manufacturer</i>	Fikstek Bağlantı Teknolojileri San. Ve Tic. LTD. ŞTI Dudullu OSB, DES SAN. Sit. 103. Sok. No:58 Istanbul Turkey
Usine de fabrication Manufacturing plant	Vesta Factory 3 – Netherlands Vesta Factory 4 – Netherlands
Cette evaluation contient: This Assessment contains	11 pages incluant 8 annexes qui font partie intégrante de cette évaluation 11 pages including 8 annexes which form an integral part of this assessment
Base de l'ETE Basis of ETA	ETAG 001, Version April 2013, utilisée en tant que EAD ETAG 001, Edition April 2013 used as EAD
Cette evaluation remplace: This Assessment replaces	

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

1 Technical description of the product

The Fikstek Vesta PRO-ONE adhesive system is a chemical anchor system (capsule type) consisting of glass capsule Vesta PRO-ONE with a threaded rod with hexagon nut and washer of sizes M8, M10, M12, M14, M16, M20, M22, M24 and M30.

The standard threaded rod can be made of zinc plated carbon steel, stainless steel or high corrosion resistant stainless steel.

The glass capsule is placed into a rotary/percussion previously drilled hole and the threaded rod is driven by machine with simultaneous hammering and turning.

The anchor rod is anchored via the bond between anchor rod, chemical mortar and concrete.

The illustration and the description of the product are given in Annex A1.

2 Specification of the intended use

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annexes B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic tension resistance and shear resistance for threaded rods acc. TR029	See Annex C1, C2
Characteristic tension resistance and shear resistance for threaded rods acc. CEN/TS 1992-4-5	See Annex C3, C4
Displacements	See Annex C1, C2

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance						
Reaction to fire	Anchorages satisfy requirements for Class A1						
Resistance to fire	No performance determined (NPD)						

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances contained in this European Technical Assessment, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

For Basic Requirement Safety in Use the same criteria are valid as for Basic Requirement Mechanical Resistance and Stability.

3.5 Protection against noise (BWR 5)

Not relevant.

3.6 Energy economy and heat retention (BWR 6)

Not relevant.

3.7 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was determined for this product.

3.8 General aspects relating to fitness for use

Durability and Serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

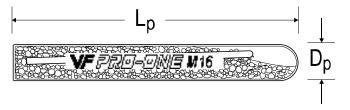
4 Assessment and Verification of Constancy of Performance (AVCP)

According to the Decision 96/582/EC of the European Commission¹, as amended, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for use in concrete	For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the works) or heavy units	_	1

5 Technical details necessary for the implementation of the AVCP system

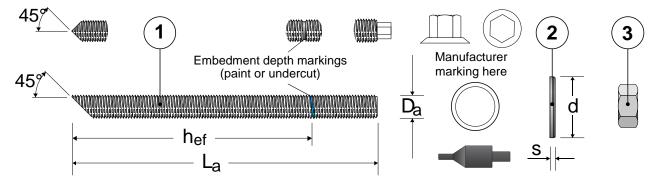
Technical details necessary for the implementation of the Assessment and verification of constancy of performance (AVCP) system are laid down in the control plan deposited at Centre Scientifique et Technique du Bâtiment.


The manufacturer shall, on the basis of a contract, involve a notified body approved in the field of anchors for issuing the certificate of conformity CE based on the control plan.

Issued in Marne La Vallée on 15-06-2015 by Charles Baloche Directeur technique

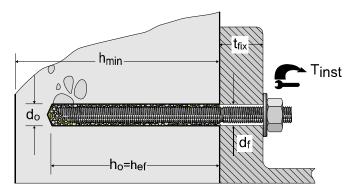
The original French version is signed

Fikstek chemical capsule anchor Vesta PRO-ONE


Mortar Capsule Vesta PRO-ONE

Marking

Manufacturer:	Fikstek
Capsule type:	Vesta PRO-ONE
Capsule size:	M


Anchor rod

Marking anchor rod: e.g. B16A

Manufacturer	В								
Size	8, 10, 12, 14, 16, 20, 22, 24, 30								
Material									
		A B H I	Stainless steel 1.4401, property class 70 Stainless steel 1.4404, property class 70 Stainless steel 1.4529, property class 70 Stainless steel 1.4565, property class 70 Stainless steel 1.4571, property class 70 Stainless steel 1.4401, property class 80 Stainless steel 1.4404, property class 80 Stainless steel 1.4571, property class 80 Stainless steel 1.4571, property class 80	CKERDMPO					

Installation

Fikstek Chemical Capsule Anchor Vesta PRO-ONE

Annex A1

System Description and Installation

Fikstek chemical capsule anchor Vesta PRO-ONE

Table A1: Materials

Part	Description	Material						
4	Thursday and	property cl	ass 5.8 or 8.8	Stainless steel 1.4401, 1.4404 or 1.4571 property class A4-70 or A4-80	High corrosion resistant steel 1.4529 or 1.4565 property class 70 EN ISO 3506-1			
1	Inreaded rod	Carbon steel property class 5.8 or 8.8 EN ISO 898-1 Galvanised steel ≥ 5µm acc. to EN ISO 4042 Galvanised steel ≥ 5µm acc. to EN ISO 4042 FN ISO 10684 Carbon steel Squanised steel ≥ 5µm acc. to EN ISO 4042 FN ISO 10684 EN ISO 10684 EN ISO 20898-2 Galvanised steel property class 4 to 8 EN ISO 20898-2 Galvanised steel ≥ 5µm acc. to EN ISO 4042 Galvanised steel ≥ 5µm acc. to EN ISO 20898-2 Galvanised steel ≥ 5µm acc. to EN ISO 10684	steel	EN ISO 3506-1				
		Carb	on steel	Stainless steel	High corrosion resistant			
2	Threaded rod Threaded rod Galvanised steel ≥ 5µm acc. to EN ISO 4042 Washer Galvanised steel ≥ 5µm acc. to EN ISO 4042 Galvanised steel ≥ 5µm acc. to EN ISO 10684 Carbon steel ≥ 5µm acc. to EN ISO 10684 EN ISO 4042 Find the dip galvan steel EN ISO 10684 EN ISO 4042 Find the dip galvan steel EN ISO 10684 EN ISO 88 Carbon steel EN ISO 10684 EN ISO 20898-2 Hexagon nut Galvanised steel Property class 4 to 8 EN ISO 20898-2 Hexagon nut Galvanised steel EN ISO 10684 EN ISO 4042 Galvanised steel EN ISO 10684 EN ISO 20898-2 Galvanised steel EN ISO 10684 EN ISO 4042 Find the dip galvan steel EN ISO 10684 EN ISO 4042 Find the dip galvan steel EN ISO 10684 EN ISO 4042 Find the dip galvan steel EN ISO 10684 EN ISO 4042 Find the dip galvan steel EN ISO 10684 EN ISO 4042 Find the dip galvan steel EN ISO 10684 EN ISO 20898-2 Find the dip galvan steel EN ISO 10684	steel	1.4401, 1.4404 or 1.4571	steel 1.4529 or 1.4565				
			EN ISO 887 or	or EN ISO 7089 up to EN ISO 7094				
		property	class 4 to 8	Stainless steel 1.4401, 1.4404 or 1.4571 property class A4-70 or A4-80	High corrosion resistant steel 1.4529 or 1.4565 property class 70			
3	3 Hexagon nut	≥ 5µm acc. to	steel	EN ISO 3506-2	EN ISO 3506-2			
			EN IS	O 4032 or EN ISO 4034				
4		Quartz Resin						

Table A2: Dimensions in mm

Part	art Description		M8	M10	M12	M12 /1,5t	M14	M16	M16 /1,5t	M20	M20 /1,5t	M22	M24	M24 /1,5t	M30
	Throodod	Da	M8	M10	M	M12		M16		M20		M22	M24		M30
1	Threaded rod	$\begin{array}{ll} L_a & \geq \\ h_{ef} & \end{array}$	95 80	100 90	120 110	175 165	135 120	140 125	205 190	190 170	275 255	210 190	235 210	340 315	320 280
2	Washer	S d	1.6 16	2.1 21		2.5 24		3.0 30		3.0 37		3.0 39	4.0 44		4.0 56
3	Hexagon nut	SW	13	17	1	19		2	4	30		32	36		46
4	Glass	Dp	9	11	1	3	15	1	7	17		22	22		25
4	capsule	L_p	80	80	95	125	95	95	125	160	250	160	175	245	230

Fikstek Chemical Capsule Anchor Vesta PRO-ONE	Annex A2
Materials and Dimensions	

Specifications of intended use

Table B1: Overview use categories and performance categories

Use condition	ns	Mortar capsule Vesta PRO-ONE with								
		Threaded rods								
hammer drillin compressed a	ng or SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	✓								
Static and qua	asi static loading, d concrete	M8 to M30 Tables C1, C2, C3, C4, C5, C6								
	dry or wet concrete are excluded)	✓								
Installation ter	mperature (minimum)		mortar +5°C, concrete -5°C							
In-service	Temperature range I:	-40°C to +40°C	(max long term temperature +24°C and max short term temperature +40°C)							
temperature	Temperature range II:	-40°C to +80°C	(max long term temperature +50°C and max short term temperature +80°C)							

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000-12.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000-12.
- Maximum chloride concrete of 0,40% (CL 0.40) related to the cement content according to EN 206-1:2000-12.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- · Structures subject to permanently damp internal condition :
 - if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
 - with particular aggressive conditions (high corrosion resistant steel).
- Structures subject to external atmospheric exposure including industrial and marine environment :
 - if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
 - with particular aggressive conditions (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Overhead installations are permitted

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
 The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with (please choose the relevant design method): EOTA Technical Report TR 029, Edition September 2010; CEN/TS 1992-4-5

Fikstek Chemical Capsule Anchor Vesta PRO-ONE	Annex B1
Intended use - Specifications	

Table B2: Installation parameters

Anchor size		M8	M10	M12	M12 /1,5t	M14	M16	M16 /1,5t	M20	M20 /1,5t	M22	M24	M24 /1,5t	M30	
Nominal drill hole Ø	d_0	[mm]	10	12	14		16	18		22		24	2	6	32
Cutting diameter	d _{cut} ≤	[mm]	10.5	12.5	14	14.5		18.5		22.5		24.5	26.5		32.5
Depth of drill hole	h ₀	[mm]	80	90	110	165	120	125	190	170	255	190	210	315	280
Ø of clearance hole in the fixture	d _f	[mm]	9	12	1	14		16 18		22		24	2	6	33
Steel brush Ø	D	[mm]	11	13	16		18	20		24		26	2	8	34
Torque moment	T _{inst}	[Nm]	10	20	4	0	60	80		12	20	135	18	30	300

for larger clearance hole in the fixture see TR 029 section 1.1 and/or CEN/TS 1992-4-1:2009, section 1.2.3

Steel brush and installation procedure

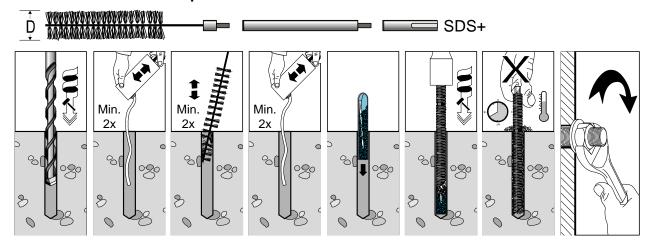


Table B3: Minimum member thickness, edge distance and spacing

_						_				-	_				
Anchor size			М8	M10	M12	M12 /1,5t	M14	M16	M16 /1,5t	M20	M20 /1,5t	M22	M24	M24 /1,5t	M30
Min. member thickness	h _{min}	[mm]	110	120	140	195	150	160	225	220	300	240	260	370	340
Min. edge distance	C _{min}	[mm]	40	45	55	55	60	65	65	85	85	95	105	105	140
Min. spacing	S _{min}	[mm]	40	45	55	55	60	65	65	85	85	95	105	105	140

Table B4: Minimum curing time

Temperatur in the concrete m		Minimum curing time in dry concrete	Minimum curing time in wet concrete
≥ - 5	°C	5 hrs.	10 hrs.
≥+ 5	°C	1 hr.	2 hrs.
≥ + 20	°C	20 min.	40 min.
≥ + 30	°C	10 min.	20 min.

Fikstek
Chemical Capsule Anchor Vesta PRO-ONE

Annex B2

Installation data

Table C1: Characteristic values of resistance to tension loads.

Design method TR 029

Anchor size			M8	M10	M12	M12 /1,5t	M14	M16	M16 /1,5t	M20	M20 /1,5t	M22	M24	M24 /1,5t	M30
Steel failure															
Characteristic resistance property class 5.8	$N_{Rk,S}$	[kN]	18	29	4	2	58	78		123		152 177		77	281
Characteristic resistance property class 70	$N_{Rk,S}$	[kN]	26	40	5	9	81	1	10	17	72	212	247		393
Characteristic resistance property class 8.8 property class 80	$N_{Rk,S}$	[kN]	29	46	6	7	92	12	26	19	96	242	28	32	449
Partial safety factor property class 5.8, 8.8 property class 70 property class 80	γ_{Ms} 1)	[-]		1.5 1.87 1.60											
Combined Pull-out and Co	oncret	e cone	failur	9											
Characteristic bond resistance	in non-	cracked	concre	te C20/	25										
Temperature range I: 40°C/24°C ²⁾	$\tau_{\text{Rk},\text{ucr}}$	[N/mm²]		12 11								10			
Temperature range II: 80°C/50°C ²⁾	$\tau_{\scriptscriptstyle Rk,ucr}$	[N/mm²]	10 9.5								9.0				
Partial safety factor $\gamma_{Mp} = \gamma$	/ _{Mc} 1)	[-]						1.	5 ³⁾						1.8
Effective anchorage depth	h _{ef}	[mm]	80	90	110	165	120	125	190	170	255	190	210	315	280
		C25/30							1.06						
		C30/37							1.14						
Increasing factors for non-		C35/45							1.22						
cracked concrete	Ψ	C40/50							1.26						
		C45/55							1.30						
		C50/60							1.34						
Splitting failure		Ц													
Char. edge distance	C _{cr,sp}	[mm]	160	135	140	205	150	160	240	215	320	240	265	395	350
Char. spacing	S _{cr,sp}	[mm]						ı	2·c _{cr,sp})			ı		
Partial safety factor $\gamma_{Msp}^{\ \ 1)}$ [-]									5 ³⁾						1.8 4

¹⁾ In absence of other national regulations /

Table C2: Displacements under tension loads

Anchor size			M8	M10	M12	M12 /1,5t	M14	M16	M16 /1,5t	M20	M20 /1,5t	M22	M24	M24 /1,5t	M30
Tension load	N	[kN]	9.6	13.5	19.7	29.6	25.1	29.9	45.5	48.3	72.5	59.4	71.6	107.4	94.2
Displacement	δ_{N0}	[mm]	0.17	0.18	0.18	0.18	0.18	0.19	0.19	0.19	0.19	0.20	0.20	0.20	0.21
Displacement	$\delta_{N\infty}$	[mm]							0.50						

Fikstek Chemical Capsule Anchor Vesta PRO-ONE

Annex C1

Design according to TR029

Characteristic values of resistance to tension loads - Displacements

²⁾ Maximum short and long term temperatures;

³⁾ The partial safety factor $\gamma_2 = 1.0$ is included /

⁴⁾ The partial safety factor $\gamma_2 = 1.2$ is included

Table C3: Characteristic values of resistance to shear loads.

Design method TR 029

Anchor size			M8 M10 M12 M12 /1,5t				M14	M16	M16 /1,5t	M20	M20 /1,5t	M22	M24	M24 /1,5t	M30
Steel failure without leve	er arm				•	•									
Characteristic resistance property class 5.8	$V_{Rk,S}$	[kN]	9	14	2	:1	29	3	9	61		76	88		140
Characteristic resistance property class 70	$V_{Rk,S}$	[kN]	13	20	3	0	40	55		86		106	124		196
Characteristic resistance property class 8.8 property class A4-80	$V_{Rk,S}$	[kN]	15	5 23 34 46 63 98 121						23 34 46 63 98 121		14	11	224	
Partial safety factor property class 5.8, 8.8	γ _{Ms} 1)	[-]							1.25	1.56					
property class 70 property class A4-80	γMs	[-]									.33				
Steel failure with lever a	ırm														
Char. bending moment property class 5.8	$M^0_{Rk,s}$	[Nm]	19	37	6	6	105	16	66	32	25	448	56	61	1125
Char. bending moment property class 70	$M^0_{Rk,s}$	[Nm]	26	52	9	2	146	23	33	45	54	627	78	36	1574
Char. bending moment property class 8.8 property class 80	${ m M}^0_{ m Rk,s}$	[Nm]	30	60	10	05	168	26	66	51	19	716	89	98	1799
Partial safety factor property class 5.8, 8.8	1)								1.25	4.50					
property class 70 property class 80	γMs ^{''}	[-]								1.56 1	.33				
Concrete pryout failure															
Factor in equation (5.7) of TR 029, Section 5.2.3.3	k	[-]							2.0						
Partial safety factor	γ _{Mc} 1)	[-]							1.5 ²⁾						
Concrete edge failure 3)		'													
Partial safety factor	γ _{Mc} 1)	[-]							1.5 ²⁾						

¹⁾ In absence of other national regulations

Table C4: Displacements under shear loads

Anchor size			M8	M10	M12	M12 /1,5t	M14	M16	M16 /1,5t	M20	M20 /1,5t	M22	M24	M24 /1,5t	M30
Shear load	V	[kN]	5.2	8.3	12.0	12.0	16.4	22.4	22.4	35.0	35.0	43.3	50.4	50.4	80.1
Dianlacement	δ_{V0}	[mm]	2.0	2.1	2.2	2.2	2.3	2.5	2.5	2.6	2.6	2.8	2.8	2.8	3.0
Displacement	$\delta_{V^{\infty}}$	[mm]	2.9	3.1	3.3	3.3	3.5	3.7	3.7	4.0	4.0	4.1	4.1	4.1	4.4

Fikstek
Chemical Capsule Anchor Vesta PRO-ONE

Annex C2

Design according to TR029

Characteristic values of resistance to shear loads - Displacements

 $^{^{2)}\,}$ The partial safety factor γ_2 = 1.0 is included

³⁾ Concrete edge failure see chapter 5.2.3.4 of Technical Report TR 029

Characteristic resistance property class 8.8 NR.8.5 RN 26 40 59 81 110 172 212 247 3 3 5 5 5 5 5 5 5 5	Anchor size		ļ	M8	M10		M12 /1,5t	M14	M16	M16 /1,5t	M20	M20 /1,5t	M22	M24	M24 /1,5t	M30
Characteristic resistance property class 5.8 N _{Rs.5} [kN] 18 29 42 58 78 123 152 1777 2 Characteristic resistance property class 70 N _{Rs.8} [kN] 26 40 59 81 110 172 212 247 3 Characteristic resistance property class 70 Characteristic resistance property class 8.8 property class 8.8 property class 8.8 property class 8.8 property class 80 Partial safety factor property class 70 Temperature range I: 80°C/50°C 2 T _{Rs.ucr} [N/mm²] 12 11 11 11 11 11 11 11 11 11 11 11 11	 Steel failure					7	1,51			/1,31		/1,31			/1,31	
Property class 70 N _{Ris.S.} [kN] 26 40 59 81 110 172 212 247 5	Characteristic resistance	$N_{Rk,S}$	[kN]	18	29	42		58	7	8	12	23	152	17	77	281
Property class 8.8 N _{R.S.S. RN 29 46 67 92 126 196 242 282 287}		$N_{Rk,S}$	[kN]	26	40	59		81	11	10	17	72	212	24	17	393
Partial safety factor property class \$8, 8.8 property class \$70 property class \$70 property class \$80	property class 8.8	$N_{Rk,S}$	[kN]	29	46	67		92	12	26	19	96	242	28	32	449
Combined Pull-out and Concrete cone failure Characteristic bond resistance in non-cracked concrete C20/25 Temperature range I: 40°C/24°C 2	Partial safety factor property class 5.8, 8.8 property class 70	γ _{Ms} 1)	[-]		<u> </u>		I	1				60				
Characteristic bond resistance in non-cracked concrete C20/25 Temperature range I: 40°C/24°C 2		2-maret	- cone	- Calling	_							.00				
Temperature range I: 40°C/24°C 2						/25										
80°C/50°C ²⁾ T _{Rk,ucr} [N/mm²] 10 9,5 15 15 15 15 15 15 15 15 15 15 15 15 15	Temperature range I:				10 525		12						11			10
Effective anchorage depth h _{af} [mm] 80 90 110 165 120 125 190 170 255 190 210 315 2 Common tease Common t		$ au_{Rk,ucr}$	[N/mm²]				10						9.5			9.0
Factor acc. CEN/TS 1992-4-5, \$\(\) \(\)	Partial safety factor γ _M	$_{\rm ip} = \gamma_{\rm Mc}^{1)}$	[-]						1.5	5 ³⁾						1.8
C25/30 1.06 C30/37 1.14 C35/45 C40/50 T.26 C45/55 T.30 C50/60 T.34 C50/60 T.35 T.30 T.34 T.30 T.	Factor acc. CEN/TS 1992-4-5	5								10.1						
Casing factors for non-cracked concrete Public Casing factors for non-cracked concrete Public Casing factors for non-cracked concrete Public Casing factors for non-cracked concrete Casing factors for non-cracked concrete Casing factors for non-cracked concrete Casing factors for non-cracked Casing factors factors for non-cracked Casing factors factors factors for non-cracked Casing factors fact	Effective anchorage depth	h _{ef}	[mm]	80	90	110	165	120	125	190	170	255	190	210	315	28
Partial safety factor for non-cracked concrete Partial safety factor Par																
C40/50 1.26	S .	111														
Concrete cone failure Factor acc. CEN/TS 1992-4-5, k	naunou conorcio	-														
Factor acc. CEN/TS 1992-4-5, k_{ucr} [-] 10.1 Edge distance $c_{cr,N}$ [-]																
Factor acc. CEN/TS 1992-4-5, $\frac{1}{8}$ 6.2.3.1 Edge distance $\frac{1}{8}$ 6.2.3.1 Edge distance $\frac{1}{8}$ 6.2.3.1 Spacing $\frac{1}{8}$ 6.2.3.1 Edge distance $\frac{1}{8}$ 6.2.3.1 Spacing $\frac{1}{8}$ 6.3.1 Spacing $\frac{1}{8}$ 6.3.1 Spacing $\frac{1}{8}$ 6.3.1 Spacing $\frac{1}{8}$ 6.3.1 Spacing $\frac{1}{8}$ 6.3.1 Spacing $\frac{1}{8}$ 6.3.1 Spacing $\frac{1}{8}$ 6.3.1	Concrete cone failure		030,00							1.0-						
Spacing $s_{cr,N}$ [-] $3 h_{ef}$ Splitting failure Char. edge distance $c_{cr,sp}$ [mm] 160 135 140 205 150 160 240 215 320 240 265 395 3 Char. spacing $s_{cr,sp}$ [mm] $c_{cr,sp}$ [mm] c		, k _{ucr}	[-]							10.1						
Splitting failure Char. edge distance $C_{cr,sp}$ [mm] 160 135 140 205 150 160 240 215 320 240 265 395 3 Char. spacing $S_{cr,sp}$ [mm] $2 \cdot c_{cr,sp}$ [mm] $2 \cdot c_{cr,sp}$ Partial safety factor $2 \cdot c_{cr,sp}$ [-] $2 \cdot c_{cr,sp}$ $2 $	Edge distance	C _{cr,N}	[-]							1.5 h _e	ıf					
Char. edge distance $C_{cr,sp}$ [mm] 160 135 140 205 150 160 240 215 320 240 265 395 3 Char. spacing $S_{cr,sp}$ [mm] $2 \cdot c_{cr,sp}$ Partial safety factor $\gamma_{Msp}^{\ 1)}$ [-] $1.5^{\ 3)}$ 1	Spacing	S _{cr,N}	[-]							3 h _{ef}						
Char. spacing $s_{cr,sp}$ [mm] $2 \cdot c_{cr,sp}$ Partial safety factor γ_{Msp}^{-1} [-] 1.5^{-3} 1 In absence of other national regulations / Maximum short and long term temperatures;	Splitting failure															
Char. spacing $S_{cr,sp}$ [mm] $2 \cdot c_{cr,sp}$ Partial safety factor γ_{Msp}^{1} [-] 1.5^{3} 1 In absence of other national regulations / Maximum short and long term temperatures;	Char. edge distance	C _{cr,sp}	[mm]	160	135	140 2	205	150	160	240	215	320	240	265	395	35
1) In absence of other national regulations / Maximum short and long term temperatures;	Char. spacing	S _{cr,sp}	[mm]		<u>1</u>					2·c _{cr,sp})					
1) In absence of other national regulations / 2) Maximum short and long term temperatures;	Partial safety factor	γ _{Msp} 1)	[-]						1.5	5 3)						1.8
		l regulation		/		IVIANII			_							

Design CEN/TS 1992-4-5:
Characteristic values of resistance to tension loads

Table C6: Characteristic values of resistance to shear loads.

Design acc. CEN/TS 1992-4-5

Anchor size			M8 M10 M12 M12 /1,5t				M14	M16	M16 /1,5t	M20	M20 /1,5t	M22	M24	M24 /1,5t	M30
Steel failure without lever	r arm														
Characteristic resistance property class 5.8	$V_{Rk,S}$	[kN]	9	14	2	:1	29	3	9	6	1	76	8	8	140
Characteristic resistance property class 70	$V_{Rk,S}$	[kN]	13	20	3	0	40	55		86		106	124		196
Characteristic resistance property class 8.8 property class 80	$V_{Rk,S}$	[kN]	15	23	3	4	46	6	3	9	8	121	141		224
Partial safety factor property class 5.8, 8.8 property class 70 property class 80	γ _{Ms} 1)	[-]							1.25	1.56 1	.33				
Ductility factor acc. CEN/TS 1992-4-5, § 6.3.2.1	k_2	[-]							0.8						
Steel failure with lever are	m														
Char. bending moment property class 5.8	$M^0_{Rk,s}$	[Nm]	19	9 37 66				16	66	325		448	56	61	1125
Char. bending moment property class 70	$M^0_{Rk,s}$	[Nm]	26	52	9	2	146	23	33	45	54	627	78	36	1574
Char. bending moment property class 8.8 property class 80	$M^0_{Rk,s}$	[Nm]	30	60	10	05	168	26	66	5′	19	716	89	88	1799
Partial safety factor property class 5.8, 8.8 property class 70 property class 80	γ _{Ms} 1)	[-]							1.25	1.56 1	.33				
Concrete pryout failure															
Factor in equation (27) of CEN/TS 1992-4-5, § 6.3.3	k ₃	[-]							2.0						
Partial safety factor	γ _{Mc} 1)	[-]							1.5 ²⁾						
Concrete edge failure 3)															
Concrete Edge failure, see		1992	2-4-5,	§ 6.3.4											
Partial safety factor	γ _{Mc} 1)	[-]							1.5 ²⁾						

 $^{^{1)}}$ In absence of other national regulations / $^{2)}$ The partial safety factor γ_2 = 1.0 is included

Fikstek
Chemical Capsule Anchor Vesta PRO-ONE

Design CEN/TS 1992-4-5:
Characteristic values of resistance to shear loads

Annex C4

³⁾ Concrete edge failure see chapter 5.2.3.4 of Technical Report TR 029