

Centre Scientifique et Technique du Bâtiment

84 avenue Jean Jaurès CHAMPS-SUR-MARNE F-77447 Marne-la-Vallée Cedex 2

Tél.: (33) 01 64 68 82 82 Fax: (33) 01 60 05 70 37

European Technical Assessment

ETA-19/0858 of 17/02/2020

English translation prepared by CSTB - Original version in French language

General Part

Nom commercial Trade name

Hilti HSL4

Famille de produit Product family

Torque-controlled expansion anchor, made of galvanised steel, in concrete under fatigue cyclic loading: sizes M16 and M20

Titulaire Manufacturer Hilti Corporation Feldkircherstrasse 100 FL-9494 Schaan Principality of Liechtenstein

Usine de fabrication Manufacturing plants

Hilti plants

Cette évaluation contient: This assessment contains 14 pages incluant 11 pages d'annexes qui font partie intégrante de cette évaluation

14 pages including 11 pages of annexes which form an integral part of this assessment

Base de l'ETE Basis of ETA

EAD 330250-00-0601 "Post-installed fasteners in concrete under fatigue cyclic loading"

Cette évaluation remplace: This assessment replaces

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific Part

Technical description of the product

The Hilti heavy duty anchor HSL4 in the range of M16 and M20 in concrete is a torque-controlled expansion anchor made of galvanised steel, consists of a threaded rod version HSL4-G (with cone, expansion sleeve, collapsible element, distance sleeve, hexagon nut and threaded rod), a Hilti filling set (with filling washer, spherical washer and lock nut) and an injection mortar (Hilti HIT-HY 200-A or Hilti HIT-HY 200-R).

It is placed into a drilled hole and anchored by torque-controlled expansion.

The illustration and the description of the product are given in Annexes A.

Specification of the intended use

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annexes B.

The provisions made in this European technical assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

Performance of the product

1.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic fatigue resistance under fatigue cyclic tension loading (Assessment method B)	
Characteristic fatigue resistance under fatigue cyclic shear loading (Assessment method B)	See Annex C1 to C2
Characteristic fatigue resistance under fatigue cyclic combined tension and shear loading (Assessment method B)	
Load transfer factor for cyclic tension and shear loading	
Load transfer factor	See Annex C1 to C2
Durability	See Annex B1

Assessment and verification of constancy of performance (AVCP)

According to the Decision 96/582/EC of the European Commission¹, as amended, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or Class	System
Metal anchors for use in concrete	For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the works) or heavy units	I	1

Official Journal of the European Communities L 254 of 08.10.1996

Technical details necessary for the implementation of the AVCP system

Technical details necessary for the implementation of the Assessment and verification of constancy of performance (AVCP) system are laid down in the control plan deposited at Centre Scientifique et Technique du Bâtiment.

The manufacturer shall, on the basis of a contract, involve a notified body approved in the field of anchors for issuing the certificate of conformity CE based on the control plan.

Issued in Marne La ՝	Vallée on	17/02/20	20 by
----------------------	-----------	----------	-------

The original French version is signed

La cheffe de division

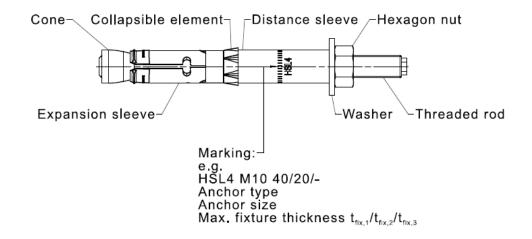
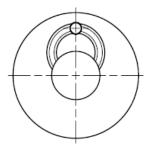
Anca CRONOPOL

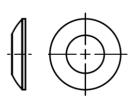
Installed condition Hilti HSL4-G installed with Hilti filling set $h_{\rm ef}$ $\boldsymbol{t}_{\text{fix}}$ $h_{\scriptscriptstyle 0}$ h Hilti heavy duty anchor HSL4 Annex A1 **Product description** Installed condition

Product description

Figure A1:

Hilti torque controlled expansion anchor HSL4-G

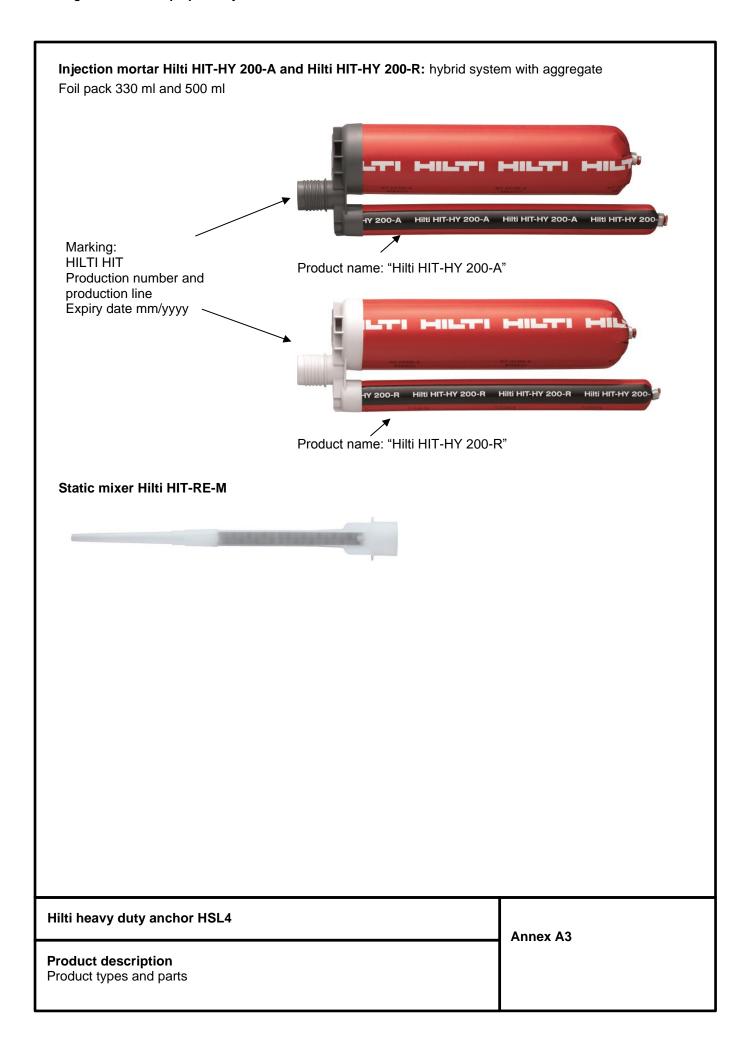




Figure A2: Hilti filling set

Sealing washer

Spherical washer

Lock nut



Hilti heavy duty anchor HSL4

Product description

Product types and parts

Annex A2

Table A1: Materials

Designation	Material
HSL4-G	·
Cone	Carbon steel, electroplated zinc coated ≥ 5µm
Expansion sleeve	Carbon steel, electroplated zinc coated ≥ 5µm
Collapsible element	Plastic element
Distance sleeve	Carbon steel, electroplated zinc coated ≥ 5µm
Hexagon nut	Carbon steel, electroplated zinc coated ≥ 5µm
Threaded rod	Carbon steel, electroplated zinc coated ≥ 5µm, rupture elongation ≥ 12%
Hilti filling set	
Filling washer	Carbon steel, electroplated zinc coated ≥ 5 µm
Spherical washer	Carbon steel, electroplated zinc coated ≥ 5 μm
Lock nut	Carbon steel, electroplated zinc coated ≥ 5 µm

Hilti heavy duty anchor HSL4	Annex A4
Product description Materials	

Specifications of intended use

Anchorages subject to:

Fatigue cyclic loading.

Note: static and quasi-static loading according to ETA-19/0556.

Base material:

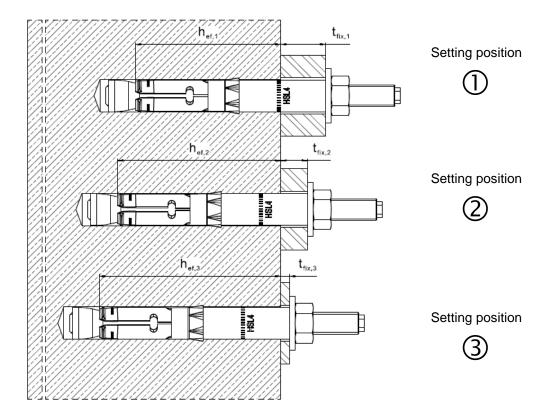
- Reinforced or unreinforced normal weight concrete according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Cracked and uncracked concrete.

Use conditions (environmental conditions):

Structures subject to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages under fatigue cyclic loading are designed in accordance with: EN 1992-4:2018.

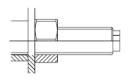

Installation:

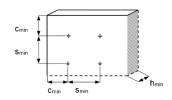
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The anchor may only be set once.
- · Drilling technique: hammer drilling.
- Cleaning the hole of drilling dust.
- In case of aborted hole, drilling of new hole at a minimum distance of twice the depth of the aborted hole, or smaller distance provided the aborted drill hole is filled with high strength mortar and no shear or oblique tension loads in the direction of aborted hole.

Hilti heavy duty anchor HSL4	Annex B1
Intended use Specifications	

Setting positions for HSL4-G

Constant anchor length with various fixture thicknesses t_{fix,i} and corresponding setting position:

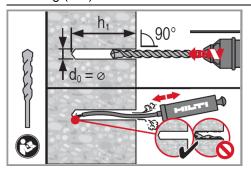

Hilti heavy duty anchor HSL4	Annex B2
Intended use Installation parameters	


Table B1: Installation parameters HSL4-G

HSL4-G			M16			M20		
Nominal diameter of drill bit	d ₀	[mm]	24				28	
Max. cutting diameter of drill bit	d _{cut}	[mm]		24,55		28,55		
Max. diameter of clearance hole in the fixture	d _f	[mm]	26				31	
Setting position	i		①	2	3	①	2	3
Fixture thickness	t _{fix,1}	[mm]		10 - 200			10 - 200	
Effective fixture thickness	$t_{\text{fix,i}}$			t _{fix,1} 1)				
Reduction of fixture thickness	Δ_{i}	[mm]	0	25	50	0	30	60
Effective anchorage depth	h _{ef,i}	[mm]	100	125	150	125	155	185
Min. depth of drill hole	h _{1,i}	[mm]	125	150	175	155	185	215
Min. thickness of concrete member	h _{min,}	i [mm]	200	275	300	250	380	410
Width across flats	SW	[mm]		24		30		
Installation torque	T _{inst}	[Nm]		70			105	
Uncracked concr	Jncracked concrete							
Minimum spacing	Smin	[mm]	100				125	
Williman opaoling	c≥	[mm]	240			300		
Minimum edge	Cmin	[mm]	100				150	
distance	s≥	[mm]	240			300		
Cracked concrete								
Minimum spacing	Smin	[mm]		80		120		
	c≥	[mm]	180				220	
Minimum edge	Cmin		100				120	
distance	s≥	[mm]		200			220	

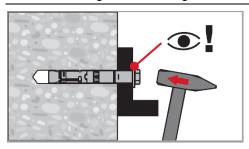
 $^{^{1)}}$ Predefined fixture thickness t_{fix} according to anchor specification, see Figure A1.

HSL4-G Threaded rod version

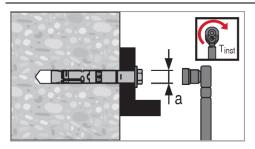


Hilti heavy duty anchor HSL4	Annex B3
Intended use Installation parameters	

Installation instructions: HSL4-G


Hole drilling and cleaning

Hammer drilling (HD) with manual cleaning (MC)


Anchor setting

Hammer setting, check setting

Anchor torqueing

Use torque wrench

Intended use

Installation instructions

Annex B4

Installation instructions for the filling set

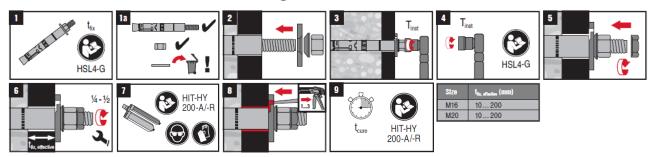


Table B2: Maximum working time and minimum curing time HY 200-A

Temperature in the base material T	Maximum working time t _{work}	Minimum curing time t _{cure}
> 0 °C to 5 °C	25 min	2 hours
> 5 °C to 10 °C	15 min	75 min
> 10 °C to 20 °C	7 min	45 min
> 20 °C to 30 °C	4 min	30 min
> 30 °C to 40 °C	3 min	30 min

Table B3: Maximum working time and minimum curing time HY 200-R

Temperature in the base material T	Maximum working time twork	Minimum curing time t _{cure}
> 0 °C to 5 °C	1 hour	4 hours
> 5 °C to 10 °C	40 min	2,5 hours
> 10 °C to 20 °C	15 min	1,5 hours
> 20 °C to 30 °C	9 min	1 hour
> 30 °C to 40 °C	6 min	1 hour

Hilti heavy duty anchor HSL4	Annex B5
Intended use Installation instructions of the filling set	

Table C1:	Essential characteristics	under tension	fatigue load in concrete

HSL4-G				M16			M20	
Steel failure								
Characteristic resistance	$\Delta N_{\text{Rk},s,0,\infty}$	[kN]	8,3 12,0					
Partial factor	γMs,N,fat	[-]	1,35					
Concrete failure								
Effective anchorage depth	$h_{\text{ef},i}$	[mm]	100	125	150	125	155	185
Characteristic resistance	$\Delta N_{\text{Rk,c,0,}\infty}$	[kN]	0,5 N _{Rk,c} 1)					
Characteristic resistance	$\Delta N_{Rk,p,0,\infty}$	[kN]	0,4 N _{Rk,p} ²⁾					
Characteristic resistance	$\Delta N_{Rk,sp,0,\infty}$	[kN]	0,5 N _{Rk,sp} ³⁾					
Characteristic resistance	$\Delta N_{Rk,cb,0,\infty}$	[kN]	0,5 N _{Rk,cb} ⁴⁾					
Partial factor	γMc,fat	[-]	1,5					
Load transfer factor for fastener groups	ΨFN	[-]	0,5					

 $^{^{1)\ 2)\ 3)\ 4)}}N_{Rk,c},\ N_{Rk,p},\ N_{Rk,sp}$ and $N_{Rk,cb}$ according to ETA-19/0556.

Table C2: Essential characteristics under shear fatigue load in concrete

HSL4-G				M16			M20	
Steel failure								
Characteristic resistance	$\Delta V_{Rk,s,0,\infty}$	[kN]	8,0 10,0					
Partial factor	γMs,V,fat	[-]	1,35					
Concrete failure								
Effective length of fastener	$I_f = h_{ef}$	[mm]	100	125	150	125	155	185
Diameter of anchor	d _{nom}	[mm]	24 28					
Characteristic resistance	$\Delta V_{Rk,\mathrm{c},0,\infty}$	[-]	0,5 V _{Rk,c} 1)					
Characteristic resistance	$\Delta V_{Rk,\mathrm{cp},0,\infty}$	[-]	0,5 V _{Rk,cp²⁾}					
Partial factor	γMc,fat	[-]	1,5					
Load transfer factor for fastener groups	ΨFV	[-]	0,5					

^{1) 2)} V_{Rk,c} and V_{Rk,cp} according to ETA-19/0556.

Hilti heavy duty anchor HSL4	Annex C1
Performances Essential characteristics under tension and shear fatigue load in concrete	

Table C3: Essential characteristics for combined fatigue load in concrete

HSL4-G			M16	M20
Exponent for combined	αsn	[-]	0	,7
fatigue load	ας	[-]	1	,5

Hilti heavy duty anchor HSL4	Annex C2
Performances Essential characteristics under combined fatigue load in concrete	