

## Centre Scientifique et Technique du Bâtiment

84 avenue Jean Jaurès CHAMPS-SUR-MARNE F-77447 Marne-la-Vallée Cedex 2 Tél.: (33) 01 64 68 82 82 Fax: (33) 01 60 05 70 37





## **Evaluation Technique Européenne**

ETE-22/0540 du 01/08/2022

#### Généralités

Nom commercial Trade name FM753 I

Famille de produit Product family

Cheville métallique en acier galvanisé, à expansion par vissage à couple contrôlé, de fixation dans le béton non fissuré :

diamètres M6, M8, M10, M12, M14 et M16

Torque-controlled expansion anchor, made of galvanised

steel, for use in uncracked concrete: sizes M6, M8, M10, M12, M14 and M16

Titulaire *Manufacturer*  FRIULSIDER Via Trieste,1

I 33048 San Giovanni al Natisone (UDINE)

**ITALIE** 

Usine de fabrication Manufacturing plants FRIULSIDER Via Trieste,1

I 33048 San Giovanni al Natisone (UDINE)

**ITALIE** 

Cette evaluation contient: This Assessment contains 13 pages incluant 10 pages d'annexes qui font partie

intégrante de cette évaluation

13 pages including 10 pages of annexes which form an

integral part of this assessment

Base de l'ETE Basis of ETA DEE 330232-00-0601 Octobre 2016 EAD 330232-00-0601 October 2016

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

#### Partie spécifique

#### 1 Description technique du produit

La cheville FRIULSIDER FM 753 I de la gamme de diamètres M6 a M16 est une cheville métallique en acier galvanisé, qui, après mise en place dans un trou de forage, est expansée par vissage à couple contrôlé.

Des figures et la description du produit sont données en Annexe A.

#### 2 Définition de l'usage prévu

Les performances données en section 3 sont valables si la cheville est utilisée en conformité avec les spécifications et conditions données en Annexes B

Les dispositions prises dans la présente Evaluation Technique Européenne reposent sur l'hypothèse que la durée de vie estimée de la cheville pour l'utilisation prévue est de 50 ans. Les indications relatives à la durée de vie ne peuvent pas être interprétées comme une garantie donnée par le fabricant, mais ne doivent être considérées que comme un moyen pour choisir les chevilles qui conviennent à la durée de vie économiquement raisonnable attendue des ouvrages.

#### 3 Performance du produit

#### 3.1 Résistance mécanique et stabilité (BWR 1)

| Caractéristique essentielle                                         | Performance    |
|---------------------------------------------------------------------|----------------|
| Résistance caractéristique en traction selon ETAG001, Annexe C      | Voir Annexe C1 |
| Résistance caractéristique en cisaillement selon ETAG 001, Annexe C | Voir Annexe C2 |
| Résistance caractéristique en traction selon CEN/TS 1992-4          | Voir Annexe C3 |
| Résistance caractéristique en cisaillement selon CEN/TS 1992-4      | Voir Annexe C4 |
| Déplacements                                                        | Voir Annexe C5 |

#### 3.2 Sécurité en cas d'incendie (BWR 2)

| Caractéristique essentielle | Performance                                         |
|-----------------------------|-----------------------------------------------------|
| Réaction au feu             | La cheville satisfait aux exigences de la classe A1 |

#### 3.3 Hygiene, santé et environnement (BWR 3)

En ce qui concerne les substances dangereuses contenues dans la présente Evaluation Technique Européen, il peut y avoir des exigences applicables aux produits relevant de son domaine d'emploi (exemple: transposition de la législation européenne et des dispositions législatives, réglementaires et nationales). Afin de respecter les dispositions du Règlement Produits de Construction, ces exigences doivent également être satisfaites lorsque et où elles s'appliquent.

#### 3.4 Sécurité d'utilisation (BWR 4)

Pour les exigences essentielles de Sécurité d'utilisation les mêmes critères que ceux mentionnés dans les exigences essentielles Resistance mécanique et stabilité sont applicables.

#### 3.5 Protection contre le bruit (BWR 5)

Non applicable.

#### 3.6 Economie d'énergie et isolation thermique (BWR 6)

Non applicable.

#### 3.7 Utilisation durable des ressources naturelles (BWR 7)

Pour l'utilisation durable des ressources naturelles aucune performance a été déterminée pour ce produit.

#### 3.8 Aspects généraux relatifs à l'aptitude à l'emploi

La durabilité et l'aptitude à l'usage ne sont assurées que si les spécifications pour l'usage prévu conformément à l'annexe B 1 sont maintenus.

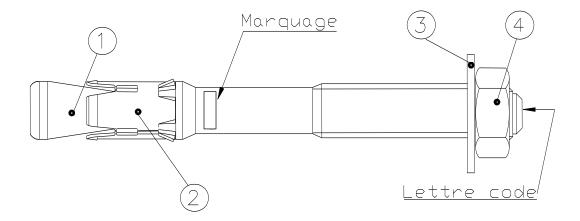
#### 4 Evaluation et vérification de la constance des performances (EVCP)

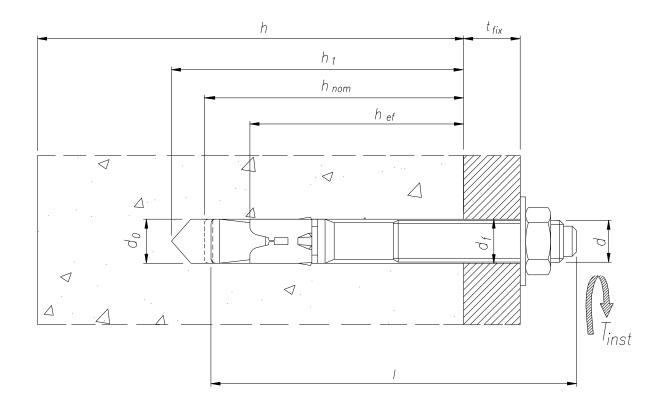
Conformément à la décision 96/582/EC de la Commission Européene<sup>1</sup>, tel que ammendée, le système d'évaluation et de vérification de la constance des performances (Voir Annexe V du règlement n° 305/2011 du parlement Européen) donné dans le tableau suivant s'applique.

| Produit                            | Usage prévu                                                                                                                      | Niveau<br>ou classe | Système |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|
| Ancrages métalliques pour le béton | Pour fixer et / ou soutenir les éléments structurels en béton ou les éléments lourds comme l'habillage et les plafonds suspendus | _                   | 1       |

### Données techniques nécessaires pour la mise en place d'un système Evaluation et de vérification de la constance des performances (EVCP)

Les données techniques nécessaires à la mise en œuvre du système d'évaluation et de vérification de la constance des performances (EVCP) sont fixées dans le plan de contrôle déposé au Centre Scientifique et Technique du Bâtiment.


Le fabricant doit, sur la base d'un contrat, impliquer un organisme notifié pour les tâches visant la délivrance du certificat de conformité CE dans le domaine des fixations, basé sur ce plan de contrôle.


Délivrée à Marne-la-Vallée le 01/08/2022 par La cheffe de la division Structure, Maçonnerie et Partition

Anca CRONOPOL

<sup>1</sup> 

#### Schémas de la cheville assemblée et de la cheville en service :

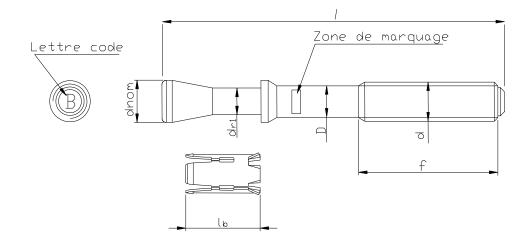




h<sub>ef</sub>: profondeur d'ancrage effective

h<sub>nom</sub> : profondeur hors-tout d'ancrage de la cheville dans le béton

 $h_1$ : profondeur du trou foré  $t_{\text{fix}}$ : épaisseur de la pièce à fixer


| / 'bay/illa | • | AVMANAIAM   | MAK MINAAAA | <b>レスカフムシ I</b> |
|-------------|---|-------------|-------------|-----------------|
| LINGVIIIG   | - | DYNAMEIMI   | nar viegand |                 |
|             | ч | CADGIISIOII | par vissage |                 |

#### **Description du produit**

Cheville assemblée et en service

Annexe A1

#### Cheville assemblée: goujon et bague d'expansion



Marquage sur le goujon: ERA X/Y

X = diamètre de filetage (d) and Y = épaisseur de la pièce à fixer (t<sub>fix</sub>) ex.: ERA 12/10 (taille M12x100)

Une lettre code correspondant à la longueur totale est poinçonnée sur la tête du goujon.

**Tableau 1: Matériaux** 

| Partie | Désignation        | Matériau                                                                                      | Protection                        |
|--------|--------------------|-----------------------------------------------------------------------------------------------|-----------------------------------|
|        |                    | M6, M8, M10 :                                                                                 | ISO 4042                          |
| 1      | Goujon             | 19MnB4 EN 10269, façonné à froid <b>M12, M14, M16</b> :                                       | Galvanisé<br>(≥ 5 μm)             |
|        |                    | C30 B KD Euronorm 119-74, façonné à froid                                                     |                                   |
| 2      | Manchon            | <b>M6 to M12</b> : EN 10132-4, façonné à froid <b>M14 and M16</b> : EN 10130, façonné à froid | ISO 2081<br>Galvanisé             |
| 3      | Rondelle           | DIN 125/1                                                                                     | (≥ 5 μm)                          |
| 4      | Ecrou<br>hexagonal | EN 24032, classe de résistance 8                                                              | ISO 4042<br>Galvanisé<br>(≥ 5 μm) |

| Cheville à expansion par vissage FM753 I               |           |
|--------------------------------------------------------|-----------|
| Description du produit Eléments, matériaux et marquage | Annexe A2 |

Tableau 2: Dimensions de la cheville

|               | Type de  | Marquage   | L                    | t <sub>fix</sub> | f    | d <sub>r1</sub> | d <sub>nom</sub> | I <sub>bague</sub> | Lettre |
|---------------|----------|------------|----------------------|------------------|------|-----------------|------------------|--------------------|--------|
|               | cheville | a. quage   | [mm]                 | [mm]             | [mm] | [mm]            | [mm]             | [mm]               | code   |
| 10            | M6x65    | ERA 6/15   | 65                   | 15               | 38   |                 |                  |                    | В      |
| M6            | M6x85    | ERA 6/35   | 85                   | 35               | 58   | 4,2             | 6                | 10,2               | С      |
|               | M6x100   | ERA 6/50   | 100                  | 50               | 58   |                 |                  |                    | D      |
|               | M8x65    | ERA 8/7    | 65                   | 7                | 35   |                 |                  |                    | В      |
|               | M8x75    | ERA 8/15   | 75 15 35<br>90 30 60 |                  | С    |                 |                  |                    |        |
| 8<br><b>M</b> | M8x90    | ERA 8/30   | 90                   | 30               | 60   | 5,8             | 8                | 11,5               | D      |
| ≥             | M8x115   | ERA 8/55   | 115                  | 55               | 40   | 5,6             | 0                | 11,5               | Е      |
|               | M8x135   | ERA 8/75   | 135                  | 75               | 85   |                 |                  |                    | F      |
|               | M8x165   | ERA 8/105  | 165                  | 105              | 85   |                 |                  |                    | G      |
|               | M10x75   | ERA 10/5   | 78                   | 5                | 40   |                 |                  |                    | В      |
|               | M10x90   | ERA 10/20  | 90                   | 20               | 52   |                 |                  |                    | С      |
| M10           | M10x100  | ERA 10/30  | 100                  | 30               | 62   | 7.4             | 10               | 14.0               | I      |
| È             | M10x120  | ERA 10/50  | 120                  | 50               | 82   | 7,4             | 10               | 14,0               | D      |
|               | M10x145  | ERA 10/70  | 145                  | 70               | 82   |                 |                  |                    | Е      |
|               | M10x170  | ERA 10/100 | 173                  | 100              | 82   |                 |                  |                    | F      |
|               | M12x100  | ERA 12/10  | 100                  | 10               | 55   |                 | 12               |                    | В      |
|               | M12x110  | ERA 12/20  | 110                  | 20               | 65   |                 |                  | 12 17              | С      |
| M12           | M12x120  | ERA 12/30  | 120                  | 30               | 65   | 0.0             |                  |                    | I      |
| È             | M12x135  | ERA 12/45  | 135                  | 45               | 90   | 8,8             | 12               |                    | D      |
|               | M12x160  | ERA 12/70  | 160                  | 70               | 90   |                 |                  |                    | Е      |
|               | M12x185  | ERA 12/100 | 188                  | 100              | 90   |                 |                  |                    | F      |
|               | M14x100  | ERA 14/3   | 103                  | 3                | 50   |                 |                  |                    | Α      |
|               | M14x110  | ERA 14/10  | 110                  | 10               | 60   |                 |                  |                    | В      |
| 4             | M14x130  | ERA 14/30  | 130                  | 30               | 65   | 40.0            | 4.4              | 40.5               | С      |
| M14           | M14x150  | ERA 14/50  | 150                  | 50               | 90   | 10,6            | 14               | 19,5               | D      |
|               | M14x170  | ERA 14/70  | 170                  | 70               | 90   |                 |                  |                    | Е      |
|               | M14x200  | ERA 14/100 | 200                  | 100              | 90   |                 |                  |                    | F      |
|               | M16x125  | ERA 16/10  | 125                  | 10               | 65   |                 |                  |                    | Α      |
| 9             | M16x145  | ERA 16/30  | 145                  | 30               | 85   | 40.0            | 40               | 00                 | В      |
| M16           | M16x175  | ERA 16/60  | 175                  | 60               | 85   | 12,6            | 16               | 23                 | С      |
|               | M16x215  | ERA 16/100 | 215                  | 100              | 85   |                 |                  |                    | D      |

| Cheville à expansion par vissage FM753 I |           |
|------------------------------------------|-----------|
| Description du produit Dimensions        | Annexe A3 |

#### Spécifications pour l'emploi prévu

#### Ancrages soumis à:

Actions statiques ou quasi statiques.

#### **Materiaux supports:**

- Béton non fissuré.
- Béton armé ou non armé de masse volumique courante, de classes de résistance C20/25 au minimum à C50/60 au maximum, conformément au document EN 206: 2000-12.

#### Conditions d'emploi (conditions d'environment):

Structures soumises à une ambiance intérieure sèche ou avec condensation provisoire.

#### Conception:

- Les ancrages sont conçus conformément à l'ETAG001 annexe C "Méthode de conceptioncalcul des ancrages" ou la norme CEN / TS 1992-4-4 "Conception-calcul des éléments de fixations pour béton" sous la responsabilité d'un ingénieur expert en ancrages et travaux de bétonnage.
- Des plans et notes de calculs vérifiables sont préparés en tenant compte des charges devant être ancrées. La position de la cheville est indiquée sur les plans de conception.

#### Installation:

- Mise en place de la cheville réalisée par du personnel qualifié, sous le contrôle du responsable technique du chantier.
- Utilisation de la cheville uniquement telle que fournie par le fabricant, sans échange de composants.
- Mise en place de la cheville conformément aux spécifications du fabricant et aux dessins préparés à cette fin, au moyen d'outils appropriés.
- La profondeur d'ancrage effective, les distances aux bords et l'espacement entre chevilles ne sont pas inférieurs aux valeurs spécifiées, absence de tolérances négatives.
- Perçage du trou en rotation-percussion.
- Nettoyage du trou des débris et poussières de perçage.
- Application du couple de serrage spécifié en utilsant une clef de serrage calibrée.
- En cas de forage abandonné, percage d'un nouveau trou à une distance minimale de deux fois la profondeur du trou abandonné, ou à une distance plus petite si le trou abandonné est comblé avec du mortier à haute résistance, et aucune charge de cisaillement ou de traction oblique n'est appliquée en direction du trou abandonné.

| Cheville à expansion par vissage FM753 I |           |
|------------------------------------------|-----------|
| Emploi prévu<br>Spécifications           | Annexe B1 |

Tableau 3: Données d'installation

|     | Type de  | <b>L</b> (0)     | Lettre code | d <sub>cut</sub> (1) | <b>d</b> <sub>f</sub> (2) | T <sub>inst</sub> (3) | <b>h</b> <sub>min</sub> (4) | <b>h</b> <sub>1</sub> (5) | h <sub>nom</sub> (6) | <b>h</b> ef (7) | t <sub>fix,max</sub> (8) | <b>S</b> min (9) | <b>C</b> <sub>min</sub> (10) |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
|-----|----------|------------------|-------------|----------------------|---------------------------|-----------------------|-----------------------------|---------------------------|----------------------|-----------------|--------------------------|------------------|------------------------------|----|-----|-----|----|------|----|-----|-----|-----|----|-----|----|-----|-----|
|     | cheville | [mm]             | marking     | [mm]                 | [mm]                      | [Nm]                  | [mm]                        | [mm]                      | [mm]                 | [mm]            | [mm]                     | [mm]             | [mm]                         |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
|     | M6x65 *  | 65               | В           |                      |                           |                       |                             |                           |                      |                 | 15                       |                  |                              |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
| 9W  | M6x85 *  | 85               | С           | 6                    | 7                         | 6                     | 100                         | 50                        | 41                   | 35*             | 35                       | 50               | 50                           |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
|     | M6x100 * | 100              | D           |                      |                           |                       |                             |                           |                      |                 | 50                       |                  |                              |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
|     | M8x65    | 65               | В           |                      |                           |                       |                             |                           |                      |                 | 7                        |                  |                              |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
|     | M8x75    | 75               | С           |                      |                           |                       |                             |                           |                      |                 | 15                       |                  |                              |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
| 8   | M8x90    | 90               | D           | 8                    | 9                         | 15                    | 100                         | 60                        | 48                   | 40              | 30                       | 60               | 60                           |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
| Σ   | M8x115   | 115              | Е           | 8                    | 9                         | 15                    | 100                         | 60                        | 40                   | 40              | 55                       | 60               | 60                           |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
|     | M8x135   | 135              | F           |                      |                           |                       |                             |                           |                      |                 | 75                       |                  |                              |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
|     | M8x165   | 165              | G           |                      |                           |                       |                             |                           |                      |                 | 105                      |                  |                              |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
|     | M10x75   | 75               | В           |                      |                           |                       |                             |                           |                      |                 | 5                        |                  |                              |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
|     | M10x90   | 90               | С           | 10                   |                           |                       |                             |                           |                      |                 |                          |                  | 20                           |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
| M10 | M10x100  | <mark>100</mark> | <u>I</u>    |                      | 12                        | 25                    | 100                         | 70                        | 59                   | 50              | <mark>30</mark>          | 75               | 75                           |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
| È   | M10x120  | 120              | D           |                      |                           |                       | 100                         |                           |                      |                 | 50                       | 75               | 75                           |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
|     | M10x145  | 145              | Е           |                      |                           |                       |                             |                           |                      |                 |                          | 75               |                              |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
|     | M10x170  | 170              | F           |                      |                           |                       |                             |                           |                      |                 |                          |                  | 100                          |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
|     | M12x100  | 100              | В           |                      | _                         | _                     |                             |                           |                      |                 |                          |                  |                              |    | 10  |     |    |      |    |     |     |     |    |     |    |     |     |
|     | M12x110  | 110              | С           |                      |                           |                       |                             |                           |                      |                 |                          |                  |                              |    |     |     |    |      |    |     |     |     |    |     | 20 |     |     |
| M12 | M12x120  | <mark>120</mark> | I           | 12                   | 14                        | 50                    | 120                         | 85                        | 71                   | 60              | <mark>30</mark>          | 90               | 90                           |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
| È   | M12x135  | 135              | D           | 12                   | 12                        | 12                    | 12                          | 12                        | 12                   | 12              | 14                       | 50               | 120                          | 65 | / 1 | 60  | 45 | 90   | 90 |     |     |     |    |     |    |     |     |
|     | M12x160  | 160              | Е           |                      |                           |                       |                             |                           |                      |                 |                          |                  |                              |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
|     | M12x185  | 185              | F           |                      |                           |                       |                             |                           |                      |                 | 100                      |                  |                              |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
|     | M14x100  | 100              | Α           |                      |                           |                       |                             |                           |                      |                 | 3                        |                  |                              |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
|     | M14x110  | 110              | В           |                      |                           |                       |                             |                           |                      |                 | 10                       |                  |                              |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
| 41M | M14x130  | 130              | С           | 14                   | 16                        | 70                    | 140                         | 95                        | 80                   | 70              | 30                       | 105              | 105                          |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
| È   | M14x150  | 150              | D           | 14                   | 10                        | 70                    | 140                         | 95                        | 80                   | 70              | 50                       | 105              | 105                          |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
|     | M14x170  | 170              | Е           |                      |                           |                       |                             |                           |                      |                 | 70                       |                  |                              |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
|     | M14x200  | 200              | F           |                      |                           |                       |                             |                           |                      |                 | 100                      |                  |                              |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
| _   | M16x125  | 125              | Α           |                      |                           |                       |                             |                           |                      |                 | 10                       |                  |                              |    |     |     |    |      |    |     |     |     |    |     |    |     |     |
| M16 | M16x145  | 145              | В           | 16                   | 16                        | 16                    | 16                          | 10                        | 16                   | 16              | 16                       | 16               | 16                           | 16 | 10  | 10  | 16 | 16 4 | 10 | 100 | 170 | 445 | 00 | 0.5 | 30 | 130 | 130 |
| È   | M16x175  | 175              | С           |                      |                           |                       |                             | 16 18                     | 100                  | 170             | 115                      | 96               | 85                           | 60 | 130 | 130 |    |      |    |     |     |     |    |     |    |     |     |
|     | M16x215  | 215              | D           |                      |                           |                       |                             |                           |                      |                 | 100                      |                  |                              |    |     |     |    |      |    |     |     |     |    |     |    |     |     |

<sup>\*</sup> usage restreint aux ancrages d'éléments hyperstatiques.

- (0) Longueur totale du goujon (mm)
- (1) Diamètre nominal du foret, d<sub>cut</sub> (mm)
- (2) Diamètre trou passage dans l'élément à fixer, d<sub>f</sub> (mm)
- (3) Couple de serrage requis, T<sub>inst</sub> (Nm)
- (4) Epaisseur min. de l'élément en béton, h<sub>min</sub> (mm)
- (5) Profond. trou foré au pt le plus bas, h<sub>1</sub> (mm)

- (6) Profond. min. de mise en oeuvre,  $h_{\text{nom}}$  (mm)
- (7) Profondeur d'ancrage effective, hef (mm)
- (8) Epaisseur max. de l'élt. à fixer,  $t_{\text{fix,maxi}}$  (mm)
- (9) Distance entre axes minimale (mm)
- (10) Distance minimale à un bord libre (mm)

| Cheville | à | expansion | nar | Ansesiv | FM753 I     |
|----------|---|-----------|-----|---------|-------------|
| CHEVILLE | а | expansion | pai | vissaye | LIMI 1 22 I |

#### Emploi prévu

Paramètres d'Installation

**Annexe B2** 

Tableau 4: Résistances caractéristiques en traction sous charges statiques ou quasi statiques pour la méthode de conception-calcul A selon ETAG001, Annexe C

|            |      |      | M14  | M16  |
|------------|------|------|------|------|
|            |      |      |      |      |
| 10,9* 17,2 | 28,0 | 31,6 | 51,2 | 72,3 |
| 1,48* 1,40 | 1,40 | 1,40 | 1,48 | 1,48 |
|            |      |      |      |      |

| Rupture par extraction                                  | Rupture par extraction $N_{Rk,p} = \Psi_c \times N^0_{Rk,p}$ |                    |      |    |                   |  |                   |      |    |  |  |  |  |
|---------------------------------------------------------|--------------------------------------------------------------|--------------------|------|----|-------------------|--|-------------------|------|----|--|--|--|--|
| Résistance caractéristique en béton non fissuré C20/25  |                                                              | $N^0_{Rk,p}$       | [kN] | 6* | 6* 9              |  | 20                | 25   | 35 |  |  |  |  |
| Coefficient partiel de sécurité en béton non fissuré    |                                                              | γ <sub>Mp</sub> 1) | [-]  |    | 1,8 <sup>2)</sup> |  | 1,5 <sup>3)</sup> |      |    |  |  |  |  |
| C30/37                                                  |                                                              |                    | [-]  |    | 1,17              |  |                   | 1,22 |    |  |  |  |  |
| Facteur d'accroissement pour N <sub>RK</sub> , en béton | C40/50                                                       | $\Psi_{c}$         | [-]  |    | 1,32              |  |                   | 1,41 |    |  |  |  |  |
| C50/60                                                  |                                                              |                    | [-]  |    | 1,42              |  |                   | 1,55 |    |  |  |  |  |

| Rupture par cône                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rupture par cône de béton et rupture par fendage |          |                                                  |      |      |                   |                                     |      |      |     |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------|--------------------------------------------------|------|------|-------------------|-------------------------------------|------|------|-----|--|--|--|
| Profondeur d'ancra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ge effe                                          | ective   | h <sub>ef</sub>                                  | [mm] | 35*  | 40                | 50                                  | 60   | 70   | 85  |  |  |  |
| Coefficient partiel d<br>en béton non fissur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | urité    | γ <sub>Mc</sub> = γ <sub>Msp</sub> <sup>1)</sup> | [-]  |      | 1,8 <sup>2)</sup> | 1,8 <sup>2)</sup> 1,5 <sup>3)</sup> |      |      |     |  |  |  |
| Facteur d'accroissement pour N <sub>RK.</sub> en béton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | C30/37   |                                                  | [-]  |      | 1,17              |                                     | 1,22 |      |     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | C40/50   | $\Psi_{\text{c}}$                                | [-]  |      | 1,32              |                                     |      | 1,41 |     |  |  |  |
| The state of the s |                                                  | C50/60   |                                                  | [-]  |      | 1,42              |                                     |      | 1,55 |     |  |  |  |
| Entraxe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cone                                             | de béton | S <sub>cr,N</sub>                                | [mm] | 105* | 120               | 150                                 | 180  | 210  | 255 |  |  |  |
| caractéristique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fe                                               | ndage    | S <sub>cr,sp</sub>                               | [mm] | 210* | 240               | 300                                 | 360  | 420  | 510 |  |  |  |
| Distance carac.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cone                                             | de béton | C <sub>cr,N</sub>                                | [mm] | 53*  | 60                | 75                                  | 90   | 105  | 130 |  |  |  |
| à un bord libre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fe                                               | ndage    | C <sub>cr,sp</sub>                               | [mm] | 105* | 120               | 150                                 | 180  | 210  | 255 |  |  |  |

<sup>\*</sup> Usage restreint aux ancrages d'éléments hyperstatiques.

| Cheville à expansion par vissage FM753 I                                                         | Annaya C4 |
|--------------------------------------------------------------------------------------------------|-----------|
| Conception-calcul selon l'ETAG001, Annex C Résistances caractéristiques sous charges de traction | Annexe C1 |

<sup>1)</sup> En absence de réglementation nationale

 $<sup>^{2)}</sup>$  La valeur comprend un coefficient de sécurité d'installation  $\gamma_2$  = 1.2

 $<sup>^{3)}</sup>$  La valeur comprend un coefficient de sécurité d'installation  $\gamma_2$  = 1.0

Tableau 5: Résistances caractéristiques en cisaillement sous charges statiques ou quasi statiques pour la méthode de conception-calcul A selon ETAG001, Annexe C

|                                    |                    |      | М6  | M8  | M10  | M12  | M14  | M16  |
|------------------------------------|--------------------|------|-----|-----|------|------|------|------|
| Rupture de l'acier sans bras de le | evier              |      |     |     |      |      |      |      |
| Résistance caractéristique         | $V_{Rk,s}$         | [kN] | 6,0 | 9,1 | 14,8 | 18,4 | 32,1 | 42,3 |
| Coefficient partiel de sécurité    | γ <sub>Ms</sub> 1) | [-]  | 1,5 |     |      |      |      |      |

| Rupture de l'acier avec bras de levier                                                                                     |  |  |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Moment caractéristique         Mº <sub>Rk,s</sub> [Nm]         12         24         49         68         121         193 |  |  |  |  |  |  |  |  |  |  |  |
| Coefficient partiel de sécurité $\gamma_{Ms}^{1)}$ [-] 1,5                                                                 |  |  |  |  |  |  |  |  |  |  |  |

| Rupture du béton par effet de levier                                              |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Facteur dans l'équation (5.6) de l'annexe C du guide ATE, § 5.2.3.3 k [-] 1,0 2,0 |  |  |  |  |  |  |  |  |  |
| Coefficient partiel de sécurité $\gamma_{Mc}^{1)}$ [-] 1,5 2)                     |  |  |  |  |  |  |  |  |  |

| Rupture du béton en bord de dalle                                                                   |                    |     |  |  |     |                 |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|--------------------|-----|--|--|-----|-----------------|--|--|--|--|
| Longueur effective de la cheville sous charge de cisaillement I <sub>f</sub> [mm] 25 28 36 43 50 62 |                    |     |  |  |     |                 |  |  |  |  |
| Diamètre extérieur de la chevillle d <sub>nom</sub> [mm] 6 8 10 12 14 16                            |                    |     |  |  |     |                 |  |  |  |  |
| Coefficient partiel de sécurité                                                                     | γ <sub>Mc</sub> 1) | [-] |  |  | 1,5 | 5 <sup>2)</sup> |  |  |  |  |

<sup>1)</sup> En absence de réglementation nationale

| Cheville à expansion par vissage FM753 I                                                            | Annaya C2 |
|-----------------------------------------------------------------------------------------------------|-----------|
| Conception-calcul selon l'ETAG001, Annex C Résistances caractéristiques sous charges de cisailement | Annexe C2 |

 $<sup>^{2)}</sup>$  La valeur comprend un coefficient de sécurité d'installation  $\gamma_2$  = 1.0

Tableau 6: Résistances caractéristiques en traction sous charges statiques ou quasi statiques pour la méthode de conception-calcul A selon CEN/TS 1992-4

|                                 |                               |      | M6 *  | М8   | M10  | M12  | M14  | M16  |
|---------------------------------|-------------------------------|------|-------|------|------|------|------|------|
| Rupture acier                   |                               |      |       |      |      |      |      |      |
| Résistance caractéristique      | $N_{Rk,s}$                    | [kN] | 10,9* | 17,2 | 28,0 | 31,6 | 51,2 | 72,3 |
| Coefficient partiel de sécurité | γ <sub>Ms</sub> <sup>1)</sup> | [-]  | 1,48* | 1,40 | 1,40 | 1,40 | 1,48 | 1,48 |

| Rupture par extraction $N_{Rk,p} = \Psi_c \times N^0_{Rk,p}$ |        |                    |      |    |                   |  |                   |      |    |  |  |  |
|--------------------------------------------------------------|--------|--------------------|------|----|-------------------|--|-------------------|------|----|--|--|--|
| Résistance caractéristique en béton non fissuré C20/25       |        | $N^0_{Rk,p}$       | [kN] | 6* | 6* 9              |  | 20                | 25   | 35 |  |  |  |
| Coefficient partiel de sécurité en béton non fissuré         |        | γ <sub>Mp</sub> 1) | [-]  |    | 1,8 <sup>2)</sup> |  | 1,5 <sup>3)</sup> |      |    |  |  |  |
| C30/37                                                       |        |                    | [-]  |    | 1,17              |  |                   | 1,22 |    |  |  |  |
| Facteur d'accroissement pour N <sub>RK</sub> , en béton      |        | $\Psi_{\text{c}}$  | [-]  |    | 1,32              |  | 1,41              |      |    |  |  |  |
| ,                                                            | C50/60 |                    | [-]  |    | 1,42              |  |                   | 1,55 |    |  |  |  |

| -                                                   |                       |            |                                   |         |      |                   |     |                   |      |     |  |
|-----------------------------------------------------|-----------------------|------------|-----------------------------------|---------|------|-------------------|-----|-------------------|------|-----|--|
| Rupture par cône                                    | de bé                 | ton et rup | ture pa                           | ar fend | dage |                   |     |                   |      |     |  |
| Profondeur d'ancra                                  | ge effe               | ective     | h <sub>ef</sub>                   | [mm]    | 35*  | 40                | 50  | 60                | 70   | 85  |  |
| Facteur pour béton                                  | non fi                | ssuré      | k <sub>ucr</sub> [-] 10,1         |         |      |                   |     |                   |      |     |  |
| Coefficient partiel d<br>en béton non fissur        |                       | ırité      | $\gamma_{Mc} = \gamma_{Msp}^{1)}$ | [-]     |      | 1,8 <sup>2)</sup> |     | 1,5 <sup>3)</sup> |      |     |  |
| C30/37                                              |                       |            |                                   | [-]     |      | 1,17              |     | 1,22              |      |     |  |
| Facteur d'accroisse pour N <sub>RK</sub> , en béton | ment                  | C40/50     | $\Psi_{\text{c}}$                 | [-]     |      | 1,32              |     |                   | 1,41 |     |  |
|                                                     |                       | C50/60     |                                   | [-]     |      | 1,42              |     |                   | 1,55 |     |  |
| Entraxe                                             | cone                  | de béton   | S <sub>cr,N</sub>                 | [mm]    | 105* | 120               | 150 | 180               | 210  | 255 |  |
| caractéristique                                     | caractéristique fenda |            | S <sub>cr,sp</sub>                | [mm]    | 210* | 240               | 300 | 360               | 420  | 510 |  |
| Distance carac.                                     | cone                  | de béton   | C <sub>cr,N</sub>                 | [mm]    | 53*  | 60                | 75  | 90                | 105  | 130 |  |
| à un bord libre                                     | fe                    | ndage      | C <sub>cr,sp</sub>                | [mm]    | 105* | 120               | 150 | 180               | 210  | 255 |  |

<sup>\*</sup> Usage restreint aux ancrages d'éléments hyperstatiques.

# Cheville à expansion par vissage FM753 I Conception-calcul selon le CEN/TS 1992-4 Résistances caractéristiques en traction

<sup>1)</sup> En absence de réglementation nationale

<sup>&</sup>lt;sup>2)</sup> La valeur comprend un coefficient de sécurité d'installation  $\gamma_2 = 1.2$ 

 $<sup>^{3)}</sup>$  La valeur comprend un coefficient de sécurité d'installation  $\gamma_2$  = 1.0

Tableau 7: Résistances caractéristiques en cisaillement sous charges statiques ou quasi statiques pour la méthode de conception-calcul A selon CEN/TS 1992-4

|                                    |                       |      | М6  | M8  | M10  | M12  | M14  | M16  |  |
|------------------------------------|-----------------------|------|-----|-----|------|------|------|------|--|
| Rupture de l'acier sans bras de le | vier                  |      |     |     |      |      |      |      |  |
| Résistance caractéristique         | $V_{Rk,s}$            | [kN] | 6,0 | 9,1 | 14,8 | 18,4 | 32,1 | 42,3 |  |
| Facteur de ductilité               | <b>k</b> <sub>2</sub> | [-]  | 0,8 |     |      |      |      |      |  |
| Coefficient partiel de sécurité    | γ <sub>Ms</sub> 1)    | [-]  | 1,5 |     |      |      |      |      |  |

| Rupture de l'acier avec bras de levier                     |                    |     |     |  |  |  |  |     |  |
|------------------------------------------------------------|--------------------|-----|-----|--|--|--|--|-----|--|
| Moment caractéristique $M^0_{Rk,s}$ [Nm] 12 24 49 68 121 1 |                    |     |     |  |  |  |  | 193 |  |
| Coefficient partiel de sécurité                            | γ <sub>Ms</sub> 1) | [-] | 1,5 |  |  |  |  |     |  |

| Rupture du béton par effet de levier                          |                       |     |                   |     |  |  |  |
|---------------------------------------------------------------|-----------------------|-----|-------------------|-----|--|--|--|
| Facteur dans l'équation (16) du<br>CEN TS 1992-4-4, § 6.2.2.3 | <b>k</b> <sub>3</sub> | [-] | 1,0               | 2,0 |  |  |  |
| Coefficient partiel de sécurité                               | γ <sub>Mc</sub> 1)    | [-] | 1,5 <sup>2)</sup> |     |  |  |  |

| Rupture du béton en bord de dalle                             |                               |      |                   |    |    |    |    |    |
|---------------------------------------------------------------|-------------------------------|------|-------------------|----|----|----|----|----|
| Longueur effective de la cheville sous charge de cisaillement | I <sub>f</sub>                | [mm] | 25                | 28 | 36 | 43 | 50 | 62 |
| Diamètre extérieur de la chevillle                            | $d_{nom}$                     | [mm] | 6                 | 8  | 10 | 12 | 14 | 16 |
| Coefficient partiel de sécurité                               | γ <sub>Mc</sub> <sup>1)</sup> | [-]  | 1,5 <sup>2)</sup> |    |    |    |    |    |

<sup>1)</sup> En absence de réglementation nationale

| Cheville à expansion par vissage FM753 I     | Amazus C4 |
|----------------------------------------------|-----------|
| Conception-calcul selon le CEN/TS 1992-4     | Annexe C4 |
| Résistances caractéristiques en cisaillement |           |

 $<sup>^{2)}</sup>$  La valeur comprend un coefficient de sécurité d'installation  $\gamma_2$  = 1

Tableau 8: Déplacement sous charge de traction

|                                                                 |               |      | M6  | M8  | M10 | M12  | M14  | M16 |
|-----------------------------------------------------------------|---------------|------|-----|-----|-----|------|------|-----|
| Charge de traction en béton<br>non fissuré C20/25 à C50/60 [kN] |               | 2,4  | 3,6 | 4,8 | 9,5 | 11,9 | 16,7 |     |
| Déplacement                                                     | $\delta_{V0}$ | [mm] | 0,1 | 0,1 | 0,1 | 0,1  | 0,1  | 0,1 |
|                                                                 | δ∨∞           | [mm] | 1,6 | 1,6 | 1,6 | 1,6  | 1,6  | 1,6 |

Tableau 9: Déplacement sous charge de cisaillement

|                                                                        |                 |      | M6            | M8            | M10           | M12           | M14           | M16           |
|------------------------------------------------------------------------|-----------------|------|---------------|---------------|---------------|---------------|---------------|---------------|
| Charge de cisaillement<br>en béton non fissuré [kN]<br>C20/25 à C50/60 |                 | 2,9  | 4,3           | 7,0           | 8,8           | 15,3          | 20,1          |               |
| Déplocement                                                            | δνο             | [mm] | 0,8<br>(+0,7) | 0,8<br>(+0,7) | 0,9<br>(+1,2) | 1,0<br>(+1,2) | 1,2<br>(+1,2) | 1,2<br>(+1,2) |
| Déplacement                                                            | δ <sub>V∞</sub> | [mm] | 1,2<br>(+0,7) | 1,3<br>(+0,7) | 1,4<br>(+1,2) | 1,5<br>(+1,2) | 1,8<br>(+1,2) | 1,8<br>(+1,2) |

<sup>\*</sup> Déplacement : Les valeurs de déplacement communiquées dans ce tableau correspondent à la déformation propre de la cheville, laquelle est accompagnée d'un déplacement, indiqué entre parenthèses, lié à la mise en contact du corps de la cheville avec le rebord du trou percé dans l'élément en béton d'une part et la pièce à fixer d'autre part.

Un déplacement supplémentaire en raison du jeu entre la cheville et la pièce à fixer doit être pris en compte.

Cheville à expansion par vissage FM753 I

Conception-Calcul
Déplacements

Annexe C5